Reactive Polymer as Artificial Solid Electrolyte Interface for Stable Lithium Metal Batteries

被引:102
作者
Naren, Tuoya [1 ]
Kuang, Gui-Chao [1 ]
Jiang, Ruheng [1 ]
Qing, Piao [1 ]
Yang, Hao [1 ]
Lin, Jialin [1 ]
Chen, Yuejiao [1 ]
Wei, Weifeng [1 ]
Ji, Xiaobo [2 ]
Chen, Libao [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbonate Electrolyte; Dendrite Suppression; Lithium Metal Anode; Lithium-Metal Batteries; Polymer Solid Electrolyte Interphase; ANODES; PERFORMANCE; DESIGN; INTERPHASE;
D O I
10.1002/anie.202305287
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm(-2) without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.
引用
收藏
页数:8
相关论文
共 66 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Regulation of Interphase Layer by Flexible Quasi-Solid Block Polymer Electrolyte to Achieve Highly Stable Lithium Metal Batteries [J].
Chai, Simin ;
Chang, Zhi ;
Zhong, Yue ;
He, Qiong ;
Wang, Yijiang ;
Wan, Yuanlang ;
Feng, MingYang ;
Hu, Yingzhu ;
Li, WeiHang ;
Wei, Weifeng ;
Pan, Anqiang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (27)
[4]   Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework [J].
Chen, Long ;
Qiu, Xiaoming ;
Bai, Zhiming ;
Fan, Li-Zhen .
JOURNAL OF ENERGY CHEMISTRY, 2021, 52 :210-217
[5]   Selective Permeable Lithium-Ion Channels on Lithium Metal for Practical Lithium-Sulfur Pouch Cells [J].
Chen, Peng-Yu ;
Yan, Chong ;
Chen, Pengyu ;
Zhang, Rui ;
Yao, Yu-Xing ;
Peng, Hong-Jie ;
Yan, Li-Tang ;
Kaskel, Stefan ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (33) :18031-18036
[6]   Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability [J].
Chen, Yi ;
Wang, Tianyi ;
Tian, Huajun ;
Su, Dawei ;
Zhang, Qiang ;
Wang, Guoxiu .
ADVANCED MATERIALS, 2021, 33 (29)
[7]   Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries [J].
Ding, Peipei ;
Wu, Lingqiao ;
Lin, Zhiyuan ;
Lou, Chenjie ;
Tang, Mingxue ;
Guo, Xianwei ;
Guo, Hongxia ;
Wang, Yongtao ;
Yu, Haijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (03) :1548-1556
[8]   Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition [J].
Duan, Chun ;
Cheng, Zhu ;
Li, Wei ;
Li, Fan ;
Liu, Hang ;
Yang, Jingui ;
Hou, Guangjin ;
He, Ping ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (08) :3236-3245
[9]   Fatigue-Resistant Interfacial Layer for Safe Lithium Metal Batteries [J].
Gao, Rui-Min ;
Yang, Hua ;
Wang, Cao-Yu ;
Ye, Huan ;
Cao, Fei-Fei ;
Guo, Zai-Ping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (48) :25508-25513
[10]   Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries [J].
Gao, Yue ;
Zhao, Yuming ;
Li, Yuguang C. ;
Huang, Qingquan ;
Mallouk, Thomas E. ;
Wang, Donghai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) :15288-15291