COMPUTATIONAL LOWER BOUNDS OF THE MAXWELL

被引:3
作者
Gallistl, Dietmar [1 ]
Olkhovskiy, Vladislav [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
基金
欧洲研究理事会;
关键词
Maxwell; eigenvalues; lower bounds; quasi-interpolation; stability constants; 2-SIDED BOUNDS; EIGENVALUES; GUARANTEED; HOMOGENIZATION; APPROXIMATION; OPERATORS;
D O I
10.1137/21M1461447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method to compute guaranteed lower bounds to the eigenvalues of the Maxwell system in two or three space dimensions is proposed as a generalization of the method of Liu and Oishi [SIAM J. Numer. Anal., 51 (2013), pp. 1634--1654] for the Laplace operator. The main tool is the computation of an explicit upper bound to the error of the Galerkin projection. The error is split into two parts. One part is controlled by a hypercircle principle and an auxiliary eigenvalue problem. The second part requires a perturbation argument for the right-hand side replaced by a suitable piecewise polynomial. The latter error is controlled through the use of the commuting quasi-interpolation by Falk and Winther and computational bounds on its stability constant. This situation is different from the Laplace operator where such a perturbation is easily controlled through local Poincare'\ inequalities. The practical viability of the approach is demonstrated in test cases for two and three space dimensions.
引用
收藏
页码:539 / 561
页数:23
相关论文
共 38 条
[1]  
Alnas M., 2015, ARCH NUM SOFTW, V3, P1
[2]  
Arnold DN, 2018, Finite element exterior calculus, DOI [10.1137/1.9781611975543, DOI 10.1137/1.9781611975543]
[3]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[4]   Local two-sided bounds for eigenvalues of self-adjoint operators [J].
Barrenechea, G. R. ;
Boulton, L. ;
Boussaid, N. .
NUMERISCHE MATHEMATIK, 2017, 135 (04) :953-986
[5]   FINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE MAXWELL OPERATOR [J].
Barrenechea, G. R. ;
Boulton, L. ;
Boussaid, N. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2887-A2906
[6]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[7]  
Boffi Daniele., 2013, Mixed finite element methods and applications, P44
[8]  
Braess D., 2007, FINITE ELEMENTS THEO, DOI [10.1017/CBO9780511618635, DOI 10.1017/CBO9780511618635]
[9]   Discontinuous Galerkin approximation of the Maxwell eigenproblem [J].
Buffa, Annalisa ;
Perugia, Ilaria .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2198-2226
[10]   Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework [J].
Cances, Eric ;
Dusson, Genevieve ;
Maday, Yvon ;
Stamm, Benjamin ;
Vohralik, Martin .
NUMERISCHE MATHEMATIK, 2018, 140 (04) :1033-1079