A data-driven approach to decode metabolic dysfunction-associated steatotic liver disease

被引:5
作者
Ramos, Maria Jimenez [1 ]
Kendall, Timothy J. [1 ,2 ]
Drozdov, Ignat [3 ]
Fallowfield, Jonathan A. [1 ]
机构
[1] Univ Edinburgh, Inst Regenerat & Repair, Ctr Inflammat Res, Edinburgh BioQuarter, 4-5 Little France Dr, Edinburgh EH16 4UU, Scotland
[2] Univ Edinburgh, Edinburgh Pathol, 51 Little France Crescent,Old Dalkeith Rd, Edinburgh EH16 4SA, Scotland
[3] Bering Ltd, 54 Portland Pl, London W1B 1DY, England
基金
英国医学研究理事会; “创新英国”项目;
关键词
NAFLD; MASLD; Big data; Artificial intelligence; Machine Learning; Precision medicine; MACHINE LEARNING-MODEL; CONFERS SUSCEPTIBILITY; RISK; NASH; VALIDATION; PREDICTION; DESIGN; NAFLD;
D O I
10.1016/j.aohep.2023.101278
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Metabolic dysfunction-associated steatotic liver disease (MASLD), defined by the presence of liver steatosis together with at least one out of five cardiometabolic factors, is the most common cause of chronic liver disease worldwide, affecting around one in three people. Yet the clinical presentation of MASLD and the risk of progression to cirrhosis and adverse clinical outcomes is highly variable. It therefore represents both a global public health threat and a precision medicine challenge. A artificial intelligence (AI) is being investigated in MASLD to develop reproducible, quantitative, and automated methods to enhance patient stratification and to discover new biomarkers and therapeutic targets in MASLD. This review details the different applications of AI and machine learning algorithms in MASLD, particularly in analyzing electronic health record, digital pathology, and imaging data. Additionally, it also describes how specific MASLD consortia are leveraging multimodal data sources to spark research breakthroughs in the field. Using a new national-level 'data commons' (SteatoSITE) as an exemplar, the opportunities, as well as the technical challenges of large-scale databases in MASLD research, are highlighted. (c) 2023 Fundacion Clinica Medica Sur, A.C. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:7
相关论文
共 79 条
[1]   From biobank and data silos into a data commons: convergence to support translational medicine [J].
Asiimwe, Rebecca ;
Lam, Stephanie ;
Leung, Samuel ;
Wang, Shanzhao ;
Wan, Rachel ;
Tinker, Anna ;
McAlpine, Jessica N. ;
Woo, Michelle M. M. ;
Huntsman, David G. ;
Talhouk, Aline .
JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
[2]   Design and rationale for a real-world observational cohort of patients with nonalcoholic fatty liver disease: The TARGET-NASH study [J].
Barritt, A. S. ;
Gitlin, Norman ;
Klein, Samuel ;
Lok, Anna S. ;
Loomba, Rohit ;
Malahias, Laura ;
Powell, Margaret ;
Vos, Miriam B. ;
Weiss, L. Michael ;
Cusi, Kenneth ;
Neuschwander-Tetri, Brent A. ;
Sanyal, Arun .
CONTEMPORARY CLINICAL TRIALS, 2017, 61 :33-38
[3]   Patient Determinants for Histologic Diagnosis of NAFLD in the Real World: A TARGET-NASH Study [J].
Barritt, A. Sidney ;
Watkins, Stephanie ;
Gitlin, Norman ;
Klein, Samuel ;
Lok, Anna S. ;
Loomba, Rohit ;
Schoen, Cheryl ;
Reddy, K. Rajender ;
Trinh, Huy Ngoc ;
Mospan, Andrea R. ;
Vos, Miriam B. ;
Weiss, L. Michael ;
Cusi, Kenneth ;
Neuschwander-Tetri, Brent A. ;
Sanyal, Arun J. .
HEPATOLOGY COMMUNICATIONS, 2021, 5 (06) :938-946
[4]   Computer-Assisted Image Analysis of Liver Collagen: Relationship to Ishak Scoring and Hepatic Venous Pressure Gradient [J].
Calvaruso, Vincenza ;
Burroughs, Andrew Kenneth ;
Standish, Richard ;
Manousou, Pinelopi ;
Grillo, Federica ;
Leandro, Gioacchino ;
Maimone, Sergio ;
Pleguezuelo, Maria ;
Xirouchakis, Ilias ;
Guerrini, Gian Piero ;
Patch, David ;
Yu, Dominic ;
O'Beirne, James ;
Dhillon, Amar Paul .
HEPATOLOGY, 2009, 49 (04) :1236-1244
[5]   Single-nucleus RNA sequencing of pre-malignant liver reveals disease-associated hepatocyte state with HCC prognostic potential [J].
Carlessi, Rodrigo ;
Denisenko, Elena ;
Boslem, Ebru ;
Kohn-Gaone, Julia ;
Main, Nathan ;
Abu Bakar, N. Dianah B. ;
Shirolkar, Gayatri D. ;
Jones, Matthew ;
Beasley, Aaron B. ;
Poppe, Daniel ;
Dwyer, Benjamin J. ;
Jackaman, Connie ;
Tijam, M. Christian ;
Lister, Ryan ;
Karin, Michael ;
Fallowfield, Jonathan A. ;
Kendall, Timothy J. ;
Forbes, Stuart J. ;
Gray, Elin S. ;
Olynyk, John K. ;
Yeoh, George ;
Forrest, Alistair R. R. ;
Ramm, Grant A. ;
Febbraio, Mark A. ;
Tirnitz-Parker, Janina E. E. .
CELL GENOMICS, 2023, 3 (05)
[6]  
Charles D., 2015, Data Brief No. 23. Adoption of electronic health record systems among U.S. non-federal acute care hospitals: 2008-2014
[7]   Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver [J].
Choi, Kyu Jin ;
Jang, Jong Keon ;
Lee, Seung Soo ;
Sung, Yu Sub ;
Shim, Woo Hyun ;
Kim, Ho Sung ;
Yun, Jessica ;
Choi, Jin-Young ;
Lee, Yedaun ;
Kang, Bo-Kyeong ;
Kim, Jin Hee ;
Kim, So Yeon ;
Yu, Eun Sil .
RADIOLOGY, 2018, 289 (03) :688-697
[8]   Peripheral artery disease and all-cause and cardiovascular mortality in patients with NAFLD [J].
Ciardullo, S. ;
Bianconi, E. ;
Cannistraci, R. ;
Parmeggiani, P. ;
Marone, E. M. ;
Perseghin, G. .
JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2022, 45 (08) :1547-1553
[9]   Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH [J].
Conway, Jake ;
Pouryahya, Maryam ;
Gindin, Yevgeniy ;
Pan, David Z. ;
Carrasco-Zevallos, Oscar M. ;
Mountain, Victoria ;
Subramanian, G. Mani ;
Montalto, Michael C. ;
Resnick, Murray ;
Beck, Andrew H. ;
Huss, Ryan S. ;
Myers, Robert P. ;
Taylor-Weiner, Amaro ;
Wapinski, Ilan ;
Chung, Chuhan .
CELL REPORTS MEDICINE, 2023, 4 (04)
[10]   Using an Electronic Medical Records Database to Identify Non-Traditional Cardiovascular Risk Factors in Nonalcoholic Fatty Liver Disease [J].
Corey, Kathleen E. ;
Kartoun, Uri ;
Zheng, Hui ;
Chung, Raymond T. ;
Shaw, Stanley Y. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2016, 111 (05) :671-676