A SEQUENTIAL MONTE CARLO METHOD FOR PARAMETER ESTIMATION IN NONLINEAR STOCHASTIC PDE'S WITH PERIODIC BOUNDARY CONDITIONS

被引:0
|
作者
Miguez, Joaquin [1 ]
Molina-Bulla, Harold [1 ]
Marino, Ines P. [2 ,3 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid, Spain
[2] Univ Rey Juan Carlos, Dept Biol & Geol Phys & Inorgan Chem, Madrid, Spain
[3] UCL, Dept Womens Canc, London, England
来源
2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP | 2023年
关键词
Stochastic partial differential equations; Bayesian inference; particle filtering; Kuramoto-Sivashinsky; SIVASHINSKY; WAVES; TIME;
D O I
10.1109/CAMSAP58249.2023.10403440
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We tackle the problem of Bayesian inference for stochastic partial differential equations (SPDEs) with unknown parameters. We assume that the signal of interest can only be observed partially, possibly subject to some transformation, and contaminated by noise. For all practical purposes involving numerical computation, the SPDE has to be discretised using a numerical scheme that depends itself on an additional set of parameters (e.g., the number of coefficients and the time step for a spectral decomposition method). Within this setup, we address the Bayesian estimation of the complete parameter set, including both the SPDE parameters and the numerical scheme parameters, using a nested particle filter. A simple version of the proposed methodology is described and numerically demonstrated for a Kuramoto-Sivashinsky SPDE with periodic boundary conditions and a Fourier spectral-decomposition numerical scheme.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [1] Sequential Monte Carlo Smoothing with Parameter Estimation
    Yang, Biao
    Stroud, Jonathan R.
    Huerta, Gabriel
    BAYESIAN ANALYSIS, 2018, 13 (04): : 1133 - 1157
  • [2] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [3] Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    Olsson, Jimmy
    Cappe, Olivier
    Douc, Randal
    Moulines, Eric
    BERNOULLI, 2008, 14 (01) : 155 - 179
  • [4] A nonlinear population Monte Carlo scheme for Bayesian parameter estimation in a stochastic intercellular network model
    Miguez, Joaquin
    Marino, Ines P.
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 497 - 500
  • [5] A mixed PDE/Monte-Carlo method for stochastic volatility models
    Loeper, Gregoire
    Pironneau, Olivier
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 559 - 563
  • [6] Efficient implementation of periodic boundary conditions in Monte Carlo simulation
    Shakhno, Dzmitry V.
    Shakhno, Aleh V.
    Paulechka, Eugene
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (05) : 734 - 739
  • [7] Markov Chain Monte Carlo (MCMC) Method for Parameter Estimation of Nonlinear Dynamical Systems
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 7 - 10
  • [8] SEQUENTIAL MONTE CARLO METHOD FOR PARAMETER ESTIMATION IN DIFFUSION MODELS OF AFFINITY-BASED BIOSENSORS
    Shamaiah, Manohar
    Shen, Xiaohu
    Vikalo, Haris
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 525 - 528
  • [9] Speech enhancement with noise parameter estimated by a sequential Monte Carlo method
    Yao, KS
    Lee, TW
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 609 - 612
  • [10] The Monte Carlo EM method for the parameter estimation of biological models
    Angius, Alessio
    Horvath, Andras
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 275 : 23 - 36