Fractional midpoint-type inequalities for twice-differentiable functions

被引:1
作者
Hezenci, Fatih [1 ]
Bohner, Martin [2 ]
Budaka, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Merkez Duzce, Turkiye
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
关键词
Hermite-Hadamard inequality; Midpoint inequality; Fractional integral operators; Convex function; Twice differentiable function; HADAMARD-TYPE INEQUALITIES; INTEGRAL-INEQUALITIES; REAL NUMBERS; MAPPINGS;
D O I
10.2298/FIL2324131H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research article, we obtain an identity for twice differentiable functions whose second derivatives in absolute value are convex. By using this identity, we prove several left Hermite-Hadamard-type inequalities for the case of Riemann-Liouville fractional integrals. Furthermore, we provide our results by using special cases of obtained theorems.
引用
收藏
页码:8131 / 8144
页数:14
相关论文
共 30 条
[1]   Some generalized Riemann-Liouville k-fractional integral inequalities [J].
Agarwal, Praveen ;
Tariboon, Jessada ;
Ntouyas, Sotiris K. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[2]   Some New Simpson's-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators [J].
Ali, Muhammad Aamir ;
Kara, Hasan ;
Tariboon, Jessada ;
Asawasamrit, Suphawat ;
Budak, Huseyin ;
Hezenci, Fatih .
SYMMETRY-BASEL, 2021, 13 (12)
[3]  
Anastassiou G.A., 2015, FRONTIERS TIME SCALE, P237
[4]  
Barani A., 2011, RGMIA RES REP COLL, V14
[5]   On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals [J].
Budak, Huseyin ;
Hezenci, Fatih ;
Kara, Hasan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) :12522-12536
[6]   Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals [J].
Budak, Huseyin ;
Pehlivan, Ebru .
AIMS MATHEMATICS, 2020, 5 (03) :1960-1984
[7]   Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals [J].
Budak, Huseyin ;
Ertugral, Fatma ;
Pehlivan, Ebru .
FILOMAT, 2019, 33 (15) :4967-4979
[8]  
Dragomir SS, 2015, J COMPUT ANAL APPL, V18, P655
[9]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[10]  
Gorenflo R., 1997, Fractional Calculus: Integral and Differential Equations of Fractional Order in Fractals Fractional Calculus in Continuum Mechanics