High-Performance Zn-I2 Batteries Enabled by a Metal-Free Defect-Rich Carbon Cathode Catalyst

被引:20
作者
Niu, Songnan [1 ]
Zhao, Bo [2 ]
Liu, Dong [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Natl Inst Metrol China, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon-based metal-freecatalyst; defect engineering; iodide reduction; high-performance cathode; iodine-zinc battery; HIGH-ENERGY DENSITY; ZINC;
D O I
10.1021/acsami.3c03134
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aqueousiodine-zinc (Zn-I-2) batteriesbased on I-2 conversion reaction are one of the promisingenergy storage devices due to their high safety, low-cost zinc metalanode, and abundant I-2 sources. However, the performanceof Zn-I-2 batteries is limited by the sluggish I-2 conversion reaction kinetics, leading to poor rate capabilityand cycle performance. Herein, we develop a defect-rich carbon asa high-performance cathode catalyst for I-2 loading andconversion, which exhibits excellent iodine reduction reaction (IRR)activity with a high reduction potential of 1.248 V (vs Zn/Zn2+) and a high peak current density of 20.74 mA cm(-2), superior to a nitrogen-doped carbon. The I-2-loaded defect-richcarbon (DG1100/I-2) cathode achieves a large specific capacityof 261.4 mA h g(-1) at 1.0 A g(-1), a high rate capability of 131.9 mA h g(-1) at 10A g(-1), and long-term stability with a high retentionof 88.1% over 3500 cycles. Density functional theory calculationsindicated that the carbon seven-membered ring (C7) defect site possessesthe lowest adsorption energies for iodine species among several defectsites, which contributes to the high catalytic activity for IRR andthe corresponding electrochemical performance of Zn-I-2 batteries. This work offers a defect engineering strategy for boostingthe performance of Zn-I-2 batteries.
引用
收藏
页码:25558 / 25566
页数:9
相关论文
共 39 条
[1]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[2]   High-Energy Density Aqueous Zinc-Iodine Batteries with Ultra-long Cycle Life Enabled by the ZnI2 Additive [J].
Chen, Chaojie ;
Li, Zhiwei ;
Xu, Yinghong ;
An, Yufeng ;
Wu, Langyuan ;
Sun, Yao ;
Liao, Haojie ;
Zheng, Kejun ;
Zhang, Xiaogang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (39) :13268-13276
[3]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[4]   Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects [J].
Fan, Ersha ;
Li, Li ;
Wang, Zhenpo ;
Lin, Jiao ;
Huang, Yongxin ;
Yao, Ying ;
Chen, Renjie ;
Wu, Feng .
CHEMICAL REVIEWS, 2020, 120 (14) :7020-7063
[5]   Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping [J].
Jia, Yi ;
Zhang, Longzhou ;
Zhuang, Linzhou ;
Liu, Hongli ;
Yan, Xuecheng ;
Wang, Xin ;
Liu, Jiandang ;
Wang, Jiancheng ;
Zheng, Yarong ;
Xiao, Zhaohui ;
Taran, Elena ;
Chen, Jun ;
Yang, Dongjiang ;
Zhu, Zhonghua ;
Wang, Shuangyin ;
Dai, Liming ;
Yao, Xiangdong .
NATURE CATALYSIS, 2019, 2 (08) :688-695
[6]   Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions [J].
Jia, Yi ;
Zhang, Longzhou ;
Du, Aijun ;
Gao, Guoping ;
Chen, Jun ;
Yan, Xuecheng ;
Brown, Christopher L. ;
Yao, Xiangdong .
ADVANCED MATERIALS, 2016, 28 (43) :9532-+
[7]   Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential [J].
Lee, Byoung-Sun ;
Yoon, Jihyun ;
Jung, Changhoon ;
Kim, Dong Young ;
Jeon, Seung-Yeol ;
Kim, Ki-Hong ;
Park, Jun-Ho ;
Park, Hosang ;
Lee, Kang Hee ;
Kang, Yoon-Sok ;
Park, Jin-Hwan ;
Jung, Heechul ;
Yu, Woong-Ryeol ;
Doo, Seok-Gwang .
ACS NANO, 2016, 10 (02) :2617-2627
[8]   Metal Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries [J].
Li, Bin ;
Liu, Jian ;
Nie, Zimin ;
Wang, Wei ;
Reed, David ;
Liu, Jun ;
McGrail, Pete ;
Sprenkle, Vincent .
NANO LETTERS, 2016, 16 (07) :4335-4340
[9]   Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery [J].
Li, Bin ;
Nie, Zimin ;
Vijayakumar, M. ;
Li, Guosheng ;
Liu, Jun ;
Sprenkle, Vincent ;
Wang, Wei .
NATURE COMMUNICATIONS, 2015, 6
[10]   Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries [J].
Li, Jin-Yi ;
Xu, Quan ;
Li, Ge ;
Yin, Ya-Xia ;
Wan, Li-Jun ;
Guo, Yu-Guo .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (09) :1691-1708