SINGULAR HERMITIAN METRICS AND THE DECOMPOSITION THEOREM OF CATANESE, FUJITA, AND KAWAMATA

被引:2
作者
Lombardi, Luigi [1 ]
Schnell, Christian [2 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
ALGEBRAIC FIBER SPACES; BUNDLES;
D O I
10.1090/proc/16625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a torsion-free sheaf F endowed with a singular hermitian metric with semi-positive curvature and satisfying the minimal extension property admits a direct-sum decomposition F similar or equal to U circle plus A where U is a hermitian flat bundle and A is a generically ample sheaf. The result applies to the case of direct images of relative pluricanonical bundles f & lowast;omega(circle times m)(X/Y) under a surjective morphism f: X -> Y of smooth projective varieties with m >= 2. This extends previous results of Fujita, Catanese--Kawamata, and Iwai.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 19 条