On a projection least squares estimator for jump diffusion processes

被引:1
作者
Halconruy, Helene [1 ]
Marie, Nicolas [2 ]
机构
[1] Leonard de Vinci Pole Univ, Res Ctr, 12 Ave Leonard de Vinci, F-92400 Courbevoie, France
[2] Univ Paris Nanterre, Lab Modal X, 200 Ave Republ, F-92001 Nanterre, France
关键词
Projection least squares estimator; Model selection; Jump diffusion processes; ADAPTIVE ESTIMATION; DRIFT ESTIMATION; SDE DRIVEN;
D O I
10.1007/s10463-023-00881-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with a projection least squares estimator of the drift function of a jump diffusion process X computed from multiple independent copies of X observed on [0, T]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.
引用
收藏
页码:209 / 234
页数:26
相关论文
共 23 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   On the nonparametric inference of coefficients of self-exciting jump-diffusion [J].
Amorino, Chiara ;
Dion-Blanc, Charlotte ;
Gloter, Arnaud ;
Lemler, Sarah .
ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01) :3212-3277
[3]   Invariant density adaptive estimation for ergodic jump-diffusion processes over anisotropic classes [J].
Amorino, Chiara ;
Gloter, Arnaud .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 :106-129
[4]  
Applebaum C., 2009, L VY PROCESSES STOCH, DOI [10.1017/CBO9780511809781, DOI 10.1017/CBO9780511809781]
[5]  
Belomestny D, 2019, ANN I STAT MATH, V71, P29, DOI 10.1007/s10463-017-0624-y
[6]  
Bichteler K., 1983, Seminaire de probabilites de Strasbourg, V17, P132
[7]   Heat kernels for non-symmetric diffusion operators with jumps [J].
Chen, Zhen-Qing ;
Hu, Eryan ;
Xie, Longjie ;
Zhang, Xicheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (10) :6576-6634
[8]   Joint estimation for SDE driven by locally stable Levy processes [J].
Clement, Emmanuelle ;
Gloter, Arnaud .
ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02) :2922-2956
[9]   Estimating functions for SDE driven by stable Levy processes [J].
Clement, Emmanuelle ;
Gloter, Arnaud .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03) :1316-1348
[10]   On the Stability and Accuracy of Least Squares Approximations [J].
Cohen, Albert ;
Davenport, Mark A. ;
Leviatan, Dany .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2013, 13 (05) :819-834