Existence and large time behavior for a Keller-Segel model with gradient dependent chemotactic sensitivity

被引:0
作者
Han, Jiayi [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Keller-Segel model; chemotaxis; large time behavior; logistic source; BLOW-UP; PATTERN-FORMATION; SYSTEM; BOUNDEDNESS; GROWTH;
D O I
10.4064/ap220803-7-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the chemotaxis growth system{u(t)=delta u-& nabla;.(u|& nabla;v|(p-2)& nabla;v)+au-bu alpha, ,x is an element of omega,t > 0vt=delta v-v+w,w x is an element of omega,t > 0t=delta w-w+u,x is an element of omega,t > 0, in a smooth bounded domain omega subset of R-n, n >= 2 with nonnegative initial data and homogeneous boundary conditions of Neumann type for u,v and w. We will show that the problem admits a global weak solution when p is an element of(1,n alpha+2n-6 alpha+4/2n-6 alpha+4), 3 alpha-2 <= n <= 4 alpha-2, and when p > 1, n < 3 alpha-2. What is more, under appropriate conditions, this global solution with nonnegative initial data (u0,v0,w0) eventually becomes a classical solution of the system and satisfies u ->(a+/b)(1/alpha-1),v ->(a+/b)(1/alpha-1),w ->(a(+)/b)(1/alpha-1) in L-infinity(omega),
引用
收藏
页码:33 / 61
页数:29
相关论文
共 50 条
[41]   TRAVELING WAVES IN A KELLER-SEGEL MODEL WITH LOGISTIC GROWTH [J].
Li, Tong ;
Park, Jeungeun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (03) :829-853
[43]   The full Keller-Segel model is well-posed on nonsmooth domains [J].
Horstmann, D. ;
Meinlschmidt, H. ;
Rehberg, J. .
NONLINEARITY, 2018, 31 (04) :1560-1592
[44]   Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis [J].
Biler, Piotr ;
Corrias, Lucilla ;
Dolbeault, Jean .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :1-32
[45]   Persistence phenomena of classical solutions to a fractional Keller-Segel model with time-space dependent logistic source [J].
Zhang, Weiyi ;
Liu, Zuhan ;
Zhou, Ling .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) :11683-11713
[46]   Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system [J].
Zhang, Weiyi ;
Liu, Zuhan ;
Zhou, Ling .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
[47]   ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS [J].
Dejak, S. I. ;
Egli, D. ;
Lushnikov, P. M. ;
Sigal, I. M. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) :547-574
[48]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262
[49]   BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS [J].
Wang, Qi ;
Yang, Jingyue ;
Yu, Feng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (09) :5021-5036
[50]   BOUNDEDNESS AND LARGE TIME BEHAVIOR IN A TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH SIGNAL-DEPENDENT DIFFUSION AND SENSITIVITY [J].
Jin, Hai-Yang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (07) :3595-3616