Existence and large time behavior for a Keller-Segel model with gradient dependent chemotactic sensitivity

被引:0
作者
Han, Jiayi [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Keller-Segel model; chemotaxis; large time behavior; logistic source; BLOW-UP; PATTERN-FORMATION; SYSTEM; BOUNDEDNESS; GROWTH;
D O I
10.4064/ap220803-7-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the chemotaxis growth system{u(t)=delta u-& nabla;.(u|& nabla;v|(p-2)& nabla;v)+au-bu alpha, ,x is an element of omega,t > 0vt=delta v-v+w,w x is an element of omega,t > 0t=delta w-w+u,x is an element of omega,t > 0, in a smooth bounded domain omega subset of R-n, n >= 2 with nonnegative initial data and homogeneous boundary conditions of Neumann type for u,v and w. We will show that the problem admits a global weak solution when p is an element of(1,n alpha+2n-6 alpha+4/2n-6 alpha+4), 3 alpha-2 <= n <= 4 alpha-2, and when p > 1, n < 3 alpha-2. What is more, under appropriate conditions, this global solution with nonnegative initial data (u0,v0,w0) eventually becomes a classical solution of the system and satisfies u ->(a+/b)(1/alpha-1),v ->(a+/b)(1/alpha-1),w ->(a(+)/b)(1/alpha-1) in L-infinity(omega),
引用
收藏
页码:33 / 61
页数:29
相关论文
共 50 条
[31]   A stochastic Keller-Segel model of chemotaxis [J].
Chavanis, Pierre-Henri .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (01) :60-70
[32]   The stability of the Keller-Segel model [J].
Solis, FJ ;
Cortés, JC ;
Cardenas, OJ .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) :973-979
[33]   Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model [J].
Winkler, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (12) :2889-2905
[34]   Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space [J].
Jin, Hai-Yang ;
Liu, Zhengrong .
APPLIED MATHEMATICS LETTERS, 2015, 47 :13-20
[35]   GLOBAL EXISTENCE AND BOUNDEDNESS IN A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GENERAL SENSITIVITY [J].
Fujie, Kentarou ;
Senba, Takasi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01) :81-102
[36]   The 2-D stochastic Keller-Segel particle model: existence and uniqueness [J].
Cattiaux, Patrick ;
Pedeches, Laure .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (01) :447-463
[37]   Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems [J].
Luckhaus, Stephan ;
Sugiyama, Yoshie .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (03) :597-621
[38]   Weak solutions to a class of signal-dependent motility Keller-Segel systems with superlinear damping [J].
Lyu, Wenbin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 312 :209-236
[39]   Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension [J].
Calvez, Vincent ;
Corrias, Lucilla ;
Ebde, Mohamed Abderrahman .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :561-584
[40]   WAVES FOR A HYPERBOLIC KELLER-SEGEL MODEL AND BRANCHING INSTABILITIES [J].
Cerreti, Fiammetta ;
Perthame, Benoit ;
Schmeiser, Christian ;
Tang, Min ;
Vauchelet, Nicolas .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 :825-842