Existence and large time behavior for a Keller-Segel model with gradient dependent chemotactic sensitivity

被引:0
作者
Han, Jiayi [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Keller-Segel model; chemotaxis; large time behavior; logistic source; BLOW-UP; PATTERN-FORMATION; SYSTEM; BOUNDEDNESS; GROWTH;
D O I
10.4064/ap220803-7-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the chemotaxis growth system{u(t)=delta u-& nabla;.(u|& nabla;v|(p-2)& nabla;v)+au-bu alpha, ,x is an element of omega,t > 0vt=delta v-v+w,w x is an element of omega,t > 0t=delta w-w+u,x is an element of omega,t > 0, in a smooth bounded domain omega subset of R-n, n >= 2 with nonnegative initial data and homogeneous boundary conditions of Neumann type for u,v and w. We will show that the problem admits a global weak solution when p is an element of(1,n alpha+2n-6 alpha+4/2n-6 alpha+4), 3 alpha-2 <= n <= 4 alpha-2, and when p > 1, n < 3 alpha-2. What is more, under appropriate conditions, this global solution with nonnegative initial data (u0,v0,w0) eventually becomes a classical solution of the system and satisfies u ->(a+/b)(1/alpha-1),v ->(a+/b)(1/alpha-1),w ->(a(+)/b)(1/alpha-1) in L-infinity(omega),
引用
收藏
页码:33 / 61
页数:29
相关论文
共 50 条
[21]   Global existence and time decay estimate of solutions to the Keller-Segel system [J].
Tan, Zhong ;
Zhou, Jianfeng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) :375-402
[22]   ON THE FRACTIONAL-IN-TIME KELLER-SEGEL MODEL VIA SONINE KERNELS [J].
Costa, Masterson ;
Cuevas, Claudio ;
Silva, Clessius ;
Soto, Herme .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) :661-685
[23]   Existence, uniqueness and L8-bound for weak solutions of a time fractional Keller-Segel system [J].
Guo, Liujie ;
Gao, Fei ;
Zhan, Hui .
CHAOS SOLITONS & FRACTALS, 2022, 160
[24]   ON THE PSEUDO-MEASURE SOLVABILITY TO THE KELLER-SEGEL MODEL FOR CHEMOTAXIS [J].
Cuevas, Claudio ;
Silva, Clessius ;
Soto, Herme .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (10) :3778-3793
[25]   Behavior in time of solutions of a Keller-Segel system with flux limitation and source term [J].
Marras, Monica ;
Vernier-Piro, Stella ;
Yokota, Tomomi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05)
[26]   Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production [J].
Viglialoro, Giuseppe ;
Woolley, Thomas E. .
APPLICABLE ANALYSIS, 2020, 99 (14) :2507-2525
[27]   GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF A 2D KELLER-SEGEL SYSTEM IN LOGARITHMIC LEBESGUE SPACES [J].
Deng, Chao ;
Li, Tong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01) :183-195
[28]   Spatial pattern formation in the Keller-Segel Model with a logistic source [J].
Fu, Shengmao ;
Liu, Ji .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :403-417
[29]   Boundedness of Classical Solutions to a Degenerate Keller-Segel Type Model with Signal-Dependent Motilities [J].
Fujie, Kentaro ;
Jiang, Jie .
ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
[30]   Instability in a generalized Keller-Segel model [J].
De Leenheer, Patrick ;
Gopalakrishnan, Jay ;
Zuhr, Erica .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :974-991