Texture evolution prediction of 2219 aluminum alloy sheet under hydro-bulging using cross-scale numerical modeling

被引:25
作者
Pei, Yanbo [1 ]
Hao, Yonggang [1 ]
Zhao, Jie [1 ,2 ]
Yang, Jiantong [3 ]
Teng, Bugang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[3] China Univ Min & Technol Beijing, Dept Mat Sci & Engn, Beijing 100083, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2023年 / 149卷
基金
中国国家自然科学基金;
关键词
Cross -scale modeling; Crystal plasticity; Texture evolution; Aluminum alloy; Hydro -bulging forming; MICROSTRUCTURAL EVOLUTION; SINGLE-CRYSTALS; DEFORMATION; MICROMECHANICS; SUBDIVISION; PARAMETERS; STRAIN; STATE;
D O I
10.1016/j.jmst.2022.11.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simultaneous prediction of macroscopic deformation and microstructure evolution is critical for understanding the deformation mechanism of components. In this work, the hydro-bulging process of 2219 aluminum alloy sheet was investigated using cross-scale numerical modeling, in which the macroscopic finite element method (FEM) and crystal plasticity finite element method (CPFEM) were combined. The calculated texture evolution exhibits good agreement with the experimental results, and the stress error between the two scales is generally small. The effects of different strain states on texture evolution and slip mode are further discussed. As the strain ratio eta increases, the volume fractions of the initial Rotated Copper texture component and gamma -Fiber texture component decrease significantly, which tend to be stabilized at P texture component. The initial Rotated Cube texture component is inclined to rotate towards the Cube texture component, while the volume fraction of this orientation is relatively stable. The lower strain ratio can considerably enhance the activity of more equivalent slip systems, promoting a more uniform strain distribution over grains. The difficulty of grain deformation changes as the lattice rotates. The grain with easy-to-deform orientation can gradually rotate to a stable orientation during plastic deformation, which has a lower Schmid factor. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:190 / 204
页数:15
相关论文
共 52 条
[31]   Study on the orientational stability of cube-oriented FCC crystals under plane strain by use of a texture component crystal plasticity finite element method [J].
Raabe, D ;
Zhao, Z ;
Roters, F .
SCRIPTA MATERIALIA, 2004, 50 (07) :1085-1090
[32]   Using texture components in crystal plasticity finite element simulations [J].
Raabe, D ;
Roters, F .
INTERNATIONAL JOURNAL OF PLASTICITY, 2004, 20 (03) :339-361
[33]   Grain-scale micromechanics of polycrystal surfaces during plastic straining [J].
Raabe, D ;
Sachtleber, M ;
Weiland, H ;
Scheele, G ;
Zhao, ZS .
ACTA MATERIALIA, 2003, 51 (06) :1539-1560
[34]   Influence of out-of-plane stretch forming induced different strain paths on micro-texture evolution, slip system activity and Taylor factor distribution in Al-Li alloy [J].
Rakshit, Rahul ;
Sarkar, Arnab ;
Panda, Sushanta Kumar ;
Mandal, Sumantra .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
[35]   DAMASK - The Dusseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale [J].
Roters, F. ;
Diehl, M. ;
Shanthraj, P. ;
Eisenlohr, P. ;
Reuber, C. ;
Wong, S. L. ;
Maiti, T. ;
Ebrahimi, A. ;
Hochrainer, T. ;
Fabritius, H-O ;
Nikolov, S. ;
Friak, M. ;
Fujita, N. ;
Grilli, N. ;
Janssens, K. G. F. ;
Jia, N. ;
Kok, P. J. J. ;
Ma, D. ;
Meier, F. ;
Werner, E. ;
Stricker, M. ;
Weygand, D. ;
Raabe, D. .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 :420-478
[36]   Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J].
Roters, F. ;
Eisenlohr, P. ;
Hantcherli, L. ;
Tjahjanto, D. D. ;
Bieler, T. R. ;
Raabe, D. .
ACTA MATERIALIA, 2010, 58 (04) :1152-1211
[37]   Cross-scale prediction from RVE to component [J].
Sun, Xinxin ;
Li, Hongwei ;
Zhan, Mei ;
Zhou, Junyuan ;
Zhang, Jian ;
Gao, Jia .
INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 140
[38]   Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys [J].
Tu, Xiaohui ;
Shahba, Ahmad ;
Shen, Jinlei ;
Ghosh, Somnath .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 115 :268-292
[39]   Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J].
Wang, Duoduo ;
Fan, Qunbo ;
Cheng, Xingwang ;
Zhou, Yu ;
Shi, Ran ;
Qian, Yan ;
Wang, Le ;
Zhu, Xinjie ;
Gong, Haichao ;
Chen, Kai ;
Yuan, Jingjiu ;
Yang, Liu .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 111 :76-87
[40]   A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction [J].
Wang, Hui ;
Lu, Cheng ;
Tieu, Kiet ;
Liu, Yu .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 76 :231-246