Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm

被引:27
作者
Pereira, Felicia Franca [1 ]
Mendes, Tatiana Sussel Goncalves [2 ]
Simoes, Silvio Jorge Coelho [2 ,5 ]
de Andrade, Marcio Roberto Magalhaes [3 ]
Reiss, Mario Luiz Lopes [4 ]
Renk, Jennifer Fortes Cavalcante [3 ]
Santos, Tatiany Correia da Silva [1 ]
机构
[1] UNESP, Grad Program Nat Disasters, CEMADEN, Estr Doutor Altino Bondesan, Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ Unesp, Inst Sci & Technol, Dept Environm Engn, Estr Doutor Altino Bondesan, Sao Jose Dos Campos, SP, Brazil
[3] CEMADEN, Natl Ctr Monitoring & Early Warning Nat Disasters, MCTI, Estr Doutor Altino Bondesan, Sao Jose Dos Campos, SP, Brazil
[4] UFRGS Fed Univ Rio Grande do Sul, Dept Geodesy, LAFOTO Lab Photogrammetry Res, Ave Bento Goncalves, Porto Alegre, RS, Brazil
[5] Univ Algarve, Ctr Marine & Environm Res CIMA, Estr Penha, Faro, Portugal
关键词
Random Forest; Landslide susceptibility model; DTM; LiDAR; UAV; ANALYTICAL HIERARCHY PROCESS; ARTIFICIAL NEURAL-NETWORK; LOGISTIC-REGRESSION; FREQUENCY RATIO; SPATIAL PREDICTION; MODELS; MACHINE; HAZARD; GIS; PHOTOGRAMMETRY;
D O I
10.1007/s10346-022-02001-7
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Earthquakes, extreme rainfall, or human activity can all cause landslides. Several landslides occur each year around the world, often resulting in casualties and economic consequences. Landslide susceptibility mapping is considered to be the main technique for predicting the likelihood of an event based on the characteristics of the physical environment. Digital Terrain Model (DTM) is one of the fundamental data of modeling and is used to derive important conditional factors for detailed scale landslide susceptibility analyses. With this in mind, this study aimed to compare landslide susceptibility maps generated by Random Forest (RF) machine learning algorithm with data from Light Detection and Range (LiDAR) and Unmanned Aerial Vehicle (UAV). To this end, the performance achieved in prediction was evaluated using statistical evaluation measures based on training and validation datasets. The obtained results showed that the accuracy of both models is greater than 0.70, the area under the curve (AUC) is greater than 0.80, and the model generated from the LiDAR data is more accurate. The results also showed that the data from UAV have potential to use in landslide susceptibility mapping on an intra-urban scale, contributing to studies in risk areas without available data.
引用
收藏
页码:579 / 600
页数:22
相关论文
共 116 条
[81]  
Reiss M, 2019, INT ARCH PHOTOGRAM R
[82]   EVALUATION OF AN UNMANNED AERIAL VEHICLE (UAV) FOR MEASURING AND MONITORING NATURAL DISASTER RISK AREAS [J].
Reiss, M. L. L. ;
Mendes, T. S. G. ;
Pereira, F. F. ;
de Andrade, M. R. M. ;
Mendes, R. M. ;
Simoes, S. J. C. ;
de Lara, R. ;
de Souza, S. F. .
XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 :1077-1083
[83]   Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide) [J].
Rezaei, Sadegh ;
Shooshpasha, Issa ;
Rezaei, Hamed .
EARTH SCIENCES RESEARCH JOURNAL, 2018, 22 (03) :195-204
[84]  
Riley S. J., 1999, Intermountain Journal of Sciences, V5, P23
[85]   Assessing landslide susceptibility using machine learning models: a comparison between ANN, ANFIS, and ANFIS-ICA [J].
Sadighi, Mehdi ;
Motamedvaziri, Baharak ;
Ahmadi, Hasan ;
Moeini, Abolfazl .
ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (24)
[86]   Developing comprehensive geocomputation tools for landslide susceptibility mapping: LSM tool pack [J].
Sahin, Emrehan Kutlug ;
Colkesen, Ismail ;
Acmali, Suheda Semih ;
Akgun, Aykut ;
Aydinoglu, Arif Cagdas .
COMPUTERS & GEOSCIENCES, 2020, 144
[87]   Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest [J].
Sahin, Emrehan Kutlug .
SN APPLIED SCIENCES, 2020, 2 (07)
[88]   Parameters Derived from and/or Used with Digital Elevation Models (DEMs) for Landslide Susceptibility Mapping and Landslide Risk Assessment: A Review [J].
Saleem, Nayyer ;
Huq, Md. Enamul ;
Twumasi, Nana Yaw Danquah ;
Javed, Akib ;
Sajjad, Asif .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (12)
[89]   Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran [J].
Sangchini, Ebrahim Karimi ;
Emami, Seyed Naim ;
Tahmasebipour, Naser ;
Pourghasemi, Hamid Reza ;
Naghibi, Seyed Amir ;
Arami, Seyed Abdolhossein ;
Pradhan, Biswajeet .
ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (03)
[90]   The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea [J].
Saro, Lee ;
Woo, Jeon Seong ;
Kwan-Young, Oh ;
Moung-Jin, Lee .
OPEN GEOSCIENCES, 2016, 8 (01) :117-132