A KAM THEOREM FOR DEGENERATE INFINITE-DIMENSIONAL REVERSIBLE SYSTEMS

被引:0
作者
Lou, Zhaowei [1 ]
Wu, Youchao [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theorem; infinite-dimensional reversible system; Russmann non-degeneracy condition; QUASI-PERIODIC SOLUTIONS; INVARIANT TORI; PERTURBATIONS; PERSISTENCE;
D O I
10.58997/ejde.2024.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non degenerate condition of Ru center dot ssmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
Arnol V. I., 1963, RUSS MATH SURV, V18, P85, DOI [10.1070/RM1963v018n06ABEH001143, DOI 10.1070/RM1963V018N06ABEH001143]
[2]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[3]   Degenerate KAM theory for partial differential equations [J].
Bambusi, D. ;
Berti, M. ;
Magistrelli, E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3379-3397
[4]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955
[5]  
Brjuno A., 1992, Dokl. Akad. Nauk, V33, P1028
[6]   EXISTENCE OF KAM TORI IN DEGENERATE HAMILTONIAN-SYSTEMS [J].
CHENG, CQ ;
SUN, YS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (01) :288-335
[7]   Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations [J].
Feola, Roberto ;
Procesi, Michela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :3389-3447
[8]   A DEGENERATE KAM THEOREM FOR PARTIAL DIFFERENTIAL EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS [J].
Gao, Meina ;
Liu, Jianjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) :5911-5928
[9]   KAM theory for the reversible perturbations of 2D linear beam equations [J].
Ge, Chuanfang ;
Geng, Jiansheng ;
Lou, Zhaowei .
MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) :1693-1731
[10]   KAM tori of Hamiltonian perturbations of 1D linear beam equations [J].
Geng, JS ;
You, HG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :104-121