Use of bidirectional transmittance distribution function measurements to determine transmittance haze

被引:1
|
作者
Molloy, E. [1 ]
Koo, A. [1 ]
Gevaux, L. [2 ]
Obein, G. [2 ]
Yang, L. [3 ]
机构
[1] Measurement Stand Lab New Zealand, Lower Hutt, New Zealand
[2] LNE CNAM EA 2367, La Plaine St Denis, France
[3] RISE, Drottning Kristinas Vag 61, S-11428 Stockholm, Sweden
关键词
transmittance haze; goniospectrophotometry; BTDF;
D O I
10.1088/1681-7575/ace910
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Accurate and traceable measurements of transmittance haze are required for quality control in various different industries, such as optoelectronics, automobiles, and agriculture. Transmittance haze is defined as the fraction of light transmitted through a material that deviates from the incident beam by more than 2.5(& LCIRC;). Various documentary standards specify the use of an integrating sphere with a prescribed geometry for the measurement of transmittance haze. This paper uses goniometric measurements of the bidirectional transmittance distribution function (BTDF) to calculate transmittance haze according to the definition and demonstrates that the sphere-based realisation of transmittance haze specified in the documentary standards does not agree with the definition, with the difference being up to 20% for some samples. The BTDF measurements are also used to simulate the integrating sphere haze, allowing the sensitivity of the sphere haze to errors in the integrating sphere geometry to be calculated.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Prototype for Measurements in Visible Light Transmittance of Sunglasses
    Mello, Marcio M.
    Lincoln, Victor A. C.
    Ventura, Liliane
    OPHTHALMIC TECHNOLOGIES XXII, 2012, 8209
  • [42] STATIONARY FOURIER SPECTROMETER FOR OPTICAL TRANSMITTANCE MEASUREMENTS
    JUNTTILA, ML
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1993, 4 (07) : 740 - 745
  • [43] Intercomparison of far-infrared transmittance measurements
    Kehrt, M.
    Monte, C.
    Steiger, A.
    Hoehl, A.
    Hollandt, J.
    Gemuend, H. -P.
    Broemel, A.
    Haenschke, F.
    May, T.
    Dessmann, N.
    Huebers, H. -W.
    Mientus, R.
    Reck, E.
    OPTICS EXPRESS, 2018, 26 (26): : 34484 - 34496
  • [44] Shortwave infrared spectroradiometer for atmospheric transmittance measurements
    Sicard, M
    Thome, KJ
    Crowther, BG
    Smith, MW
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1998, 15 (01) : 174 - 183
  • [45] Extinction imagers for measurements of atmospheric beam transmittance
    Shields, Janet E.
    Karr, Monette E.
    APPLIED OPTICS, 2019, 58 (20) : 5486 - 5495
  • [46] Thermal transmittance measurements of niobium at cryogenic temperatures
    Wenskat, Marc
    King, Leon
    Koch, Lasse
    Saribal, Cem
    Lorf, Anton
    Diaz-Palacio, Isabel Gonzalez
    Martens, Cornelius
    Zierold, Robert
    Hillert, Wolfgang
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2025, 632
  • [47] Refractive index retrieval from transmittance measurements
    Niskanen, Ilpo
    Harkonen, Matti
    Hibino, Kenichi
    Suoranta, Terhi
    Popov, Alexey
    OPTIK, 2016, 127 (14): : 5562 - 5567
  • [48] BEER LAW AND THE OPTIMUM TRANSMITTANCE IN ABSORPTION MEASUREMENTS
    HUGHES, HK
    APPLIED OPTICS, 1963, 2 (09): : 937 - 945
  • [49] FREQUENCY RESOLVED TRANSMITTANCE MEASUREMENTS ON POLYANILINE FILMS
    HUTTON, RS
    KALAJI, M
    PETER, LM
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1989, 270 (1-2): : 429 - 436
  • [50] Background corrected transmittance and reflectance measurements in the FIR
    Kehrt, M.
    Mueller, R.
    Steiger, A.
    Monte, C.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,