An inequality for non-microstates free entropy dimension for crossed products by finite abelian groups

被引:0
|
作者
Shlyakhtenko, Dimitri [1 ]
机构
[1] UCLA, Dept Math, Los Angeles, CA 90095 USA
来源
ENSEIGNEMENT MATHEMATIQUE | 2023年 / 69卷 / 3-4期
关键词
Free probability; subfactors; free entropy dimension; FISHERS INFORMATION MEASURE; FREE PROBABILITY-THEORY; ANALOGS; SUBFACTORS; ALGEBRAS; DUALITY;
D O I
10.4171/LEM/1056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain generating sets of the subfactor pair M C M Ì G where G is a finite abelian group we prove an approximate inequality between their non-microstates free entropy dimension, resembling the Schreier formula for ranks of finite index subgroups of free groups. As an application, we give bounds on free entropy dimension of generating sets of crossed products of the form M Ì .Z=2Z)1 for a large class of algebras M.
引用
收藏
页码:381 / 397
页数:17
相关论文
共 12 条