Design, Fabrication and Characterization of 10 kV 4H-SiC BJT for the Phototransistor Target

被引:0
作者
Ammar, Ali [1 ]
Lazar, Mihai [2 ]
Vergne, Bertrand [3 ]
Scharnholz, Sigo [3 ]
Luong Viet Phung [1 ]
Brosselard, Pierre [1 ]
Tournier, Dominique [1 ]
Sonneville, Camille [1 ]
Raynaud, Christophe [1 ]
Zielinski, Marcin [4 ]
Morel, Herve [1 ]
Planson, Dominique [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Ecole Cent Lyon,INSA Lyon,AMPERE, F-69621 Lyon, France
[2] Univ Technol Troyes, EMR CNRS 7004, Light, Nanomat,Nanotechnol, F-10004 Troyes, France
[3] FrenchGerman Res Inst St Louis, ISL, F-68301 St Louis, France
[4] NOVASIC, F-73375 Le Bourget Du Lac, France
来源
ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | 2023年 / 26卷 / 02期
关键词
Bipolar junction transistor; high-voltage power semiconductor device; peripheral protection; power electronics; silicon carbide;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For medium voltage, the SiC BJT is a convenient solution to reduce the onlosses and it could have the advantage to be optical controlled, to ease the serial connection of BJT. The design of a 10 kV, 10 A SiC BJT is described. The different fabrication steps are described. The analysis and optimization of the peripheral protection are described in detail. The fabricated wafers consist in several types of electrical BJT and diodes. Moreover some phototransistors have been fabricated. The selected solution is a combination of a JTE (Junction Termination Extension) and guard rings. The first measurement results are present. Some vacuum chamber probe level measurements have shown breakdown voltage up to 11 kV. Probe measurements of the forward characteristic have shown a good operation of the electrical BJT, with a current gain up to 20. Some dies have been packaged to achieve highcurrent measurement. The on-state characterizations show on current up to 15 A with a current gain that reach 15. First optical control tests have shown encouraging results.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 21 条
[1]  
Ammar Ali, 2022, 2022 International Semiconductor Conference (CAS), P191, DOI 10.1109/CAS56377.2022.9934390
[2]  
Ammar Ali, 2022, Materials Science Forum, V1062, P613, DOI [10.4028/p-vms03o, 10.4028/p-vms03o]
[3]  
[Anonymous], 2022, SENTAURUS TCAD SIMUL, P12
[4]   SiC power-switching devices - The second electronics revolution? [J].
Cooper, JA ;
Agarwal, A .
PROCEEDINGS OF THE IEEE, 2002, 90 (06) :956-968
[5]  
Global Market Insights, 2022, GAN SIC POW SEM MARK
[6]  
Hatori K., 2018, Bodos Power Syst, P22
[7]   1000-V, 30-A 4H-SiC BJTs with high current gain [J].
Krishnaswami, S ;
Agarwal, A ;
Ryu, SH ;
Capell, C ;
Richmond, J ;
Palmour, J ;
Balachandran, S ;
Chow, TP ;
Bayne, S ;
Geil, B ;
Jones, K ;
Scozzie, C .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (03) :175-177
[8]   The role of nickel and titanium in the formation of ohmic contacts on p-type 4H-SiC [J].
Laariedh, F. ;
Lazar, M. ;
Cremillieu, P. ;
Penuelas, J. ;
Leclercq, J-L ;
Planson, D. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (04)
[9]   SILICON-CARBIDE AGAINST SILICON - A COMPARISON IN TERMS OF PHYSICAL-PROPERTIES, TECHNOLOGY AND ELECTRICAL PERFORMANCE OF POWER DEVICES [J].
LOCATELLI, ML ;
GAMAL, S .
JOURNAL DE PHYSIQUE III, 1993, 3 (06) :1101-1110
[10]   Edge termination design improvements for 10 kV 4H-SiC bipolar diodes [J].
Nguyen, D. M. ;
Huang, R. ;
Phung, L. V. ;
Planson, D. ;
Berthou, M. ;
Godignon, P. ;
Vergne, B. ;
Brosselard, P. .
SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 :609-+