Intersecting fractures in porous media: mathematical and numerical analysis

被引:6
作者
Amir, Laila [1 ,2 ]
Kern, Michel [3 ,4 ]
Mghazli, Zoubida [5 ]
Roberts, Jean E.
机构
[1] Univ Cadi Ayyad, Lab Ingn Informat & Syst L2IS, FST, Marrakech, Morocco
[2] Univ Cadi Ayyad, Lab Math Appl & Informat LAMAI, FST, Marrakech, Morocco
[3] INRIA, Paris, France
[4] Ecole Ponts, CERMICS, Marne La Vallee, France
[5] Univ Ibn Tofail, Equipe Ingn Math EIMA, Algebre & Geometrie Spectrale, EDP, Kenitra, Morocco
关键词
Porous media; fractured media; mixed finite element; domain decomposition; BALANCING DOMAIN DECOMPOSITION; SINGLE-PHASE FLOW; 2-PHASE FLOW; MODELING FRACTURES; SOLVING FLOW; DARCY FLOW; DISCRETIZATION; NETWORK; MATRIX; SIMULATIONS;
D O I
10.1080/00036811.2021.1981878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a model for flow in a fractured porous medium with intersecting fractures. The fractures are treated as lower-dimensional manifolds and then physical transmission conditions express the pressure jump and the continuity of the flux across the fractures. Specific attention is borne to the conditions when several fractures intersect. The resulting system is discretized with mixed finite element, and the well-posedness of both the continuous and the discrete problems are proved. Then a domain decomposition method is formulated, so that the problem is reduced to the set of fractures, and a simple preconditioner is proposed. Numerical results exemplify the performance of the method.
引用
收藏
页码:1312 / 1334
页数:23
相关论文
共 61 条
[1]   A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models [J].
Ahmed, Elyes ;
Fumagalli, Alessio ;
Budisa, Ana .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 :16-36
[2]   A reduced fracture model for two-phase flow with different rock types [J].
Ahmed, Elyes ;
Jaffre, Jerome ;
Roberts, Jean E. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 :49-70
[3]   Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model [J].
Ahmed, R. ;
Edwards, M. G. ;
Lamine, S. ;
Huisman, B. A. H. ;
Pal, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 284 :462-489
[4]   Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model [J].
Ahmed, Raheel ;
Edwards, Michael G. ;
Lamine, Sadok ;
Huisman, Bastiaan A. H. ;
Pal, Mayur .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 :470-497
[5]  
Alboin C, 2002, Math Numer Treat, V295, P13, DOI DOI 10.1090/CONM/295/04999
[6]  
ALBOIN C., 1999, DOMAIN DECOMPOSITION, P365
[7]  
Amir L., 2006, ARIMA, V5, P11
[8]   ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA [J].
Angot, Philippe ;
Boyer, Franck ;
Hubert, Florence .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :239-275
[9]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[10]   MIXED-DIMENSIONAL GEOMETRIC MULTIGRID METHODS FOR SINGLE-PHASE FLOW IN FRACTURED POROUS MEDIA [J].
Arraras, Andres ;
Gaspar, Francisco J. ;
Portero, Laura ;
Rodrigo, Carmen .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :B1082-B1114