Nonrational polytopes and fans in toric geometry

被引:0
作者
Battaglia, Fiammetta [1 ]
Prato, Elisa [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2023年 / 14卷 / 01期
关键词
Toric variety; nonrational convex polytope; nonrational fan; COMPACT COMPLEX-MANIFOLDS; HARD LEFSCHETZ THEOREM; INTERSECTION COHOMOLOGY; CONVEXITY PROPERTIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we examine the notion of nonrational convex polytope and nonrational fan in the context of toric geometry. We then discuss and Abstrrrelate some recent developments in the subject.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 55 条
[1]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[2]  
Audin, 1991, PROGR MATH, V93
[3]  
Battaglia F, 2001, INT MATH RES NOTICES, V2001, P1315
[4]  
BATTAGLIA F., 2017, J. Math
[5]  
Battaglia F, 2008, J SYMPLECT GEOM, V6, P139
[6]   Hirzebruch surfaces in a one-parameter family [J].
Battaglia, Fiammetta ;
Prato, Elisa ;
Zaffran, Dan .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2019, 12 (1-2) :293-305
[7]  
Battaglia F, 2017, SPRINGER INDAM SER, V23, P1, DOI 10.1007/978-3-319-67519-0_1
[8]   Nonrational symplectic toric reduction [J].
Battaglia, Fiammetta ;
Prato, Elisa .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 :98-105
[9]   Nonrational symplectic toric cuts [J].
Battaglia, Fiammetta ;
Prato, Elisa .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (10)
[10]   Foliations Modeling Nonrational Simplicial Toric Varieties [J].
Battaglia, Fiammetta ;
Zaffran, Dan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) :11785-11815