Creating high-resolution 3D cranial implant geometry using deep learning techniques

被引:2
作者
Wu, Chieh-Tsai [1 ,2 ]
Yang, Yao-Hung [3 ]
Chang, Yau-Zen [1 ,4 ,5 ]
机构
[1] Linkou Chang Gung Mem Hosp, Dept Neurosurg, Taoyuan, Taiwan
[2] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[3] ADLINK Technol Inc, Taipei, Taiwan
[4] Chang Gung Univ, Dept Mech Engn, Taoyuan, Taiwan
[5] Ming Chi Univ Technol, Dept Mech Engn, New Taipei, Taiwan
关键词
cranioplasty; cranial implant; deep learning; defective skull models; volumetric resolution; 3D inpainting; TUMOR; CRANIOPLASTY; ASYMMETRY;
D O I
10.3389/fbioe.2023.1297933
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Creating a personalized implant for cranioplasty can be costly and aesthetically challenging, particularly for comminuted fractures that affect a wide area. Despite significant advances in deep learning techniques for 2D image completion, generating a 3D shape inpainting remains challenging due to the higher dimensionality and computational demands for 3D skull models. Here, we present a practical deep-learning approach to generate implant geometry from defective 3D skull models created from CT scans. Our proposed 3D reconstruction system comprises two neural networks that produce high-quality implant models suitable for clinical use while reducing training time. The first network repairs low-resolution defective models, while the second network enhances the volumetric resolution of the repaired model. We have tested our method in simulations and real-life surgical practices, producing implants that fit naturally and precisely match defect boundaries, particularly for skull defects above the Frankfort horizontal plane.
引用
收藏
页数:15
相关论文
共 60 条
[1]  
Agarap AF, 2019, arXiv
[2]   Cranioplasty: A Comprehensive Review of the History, Materials, Surgical Aspects, and Complications [J].
Alkhaibary, Ali ;
Alharbi, Ahoud ;
Alnefaie, Nada ;
Almubarak, Abdulaziz Oqalaa ;
Aloraidi, Ahmed ;
Khairy, Sami .
WORLD NEUROSURGERY, 2020, 139 :445-452
[3]   Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling [J].
Anton, Fuessinger Marc ;
Steffen, Schwarz ;
Joerg, Neubauer ;
Carl-Peter, Cornelius ;
Mathieu, Gass ;
Philipp, Poxleitner ;
Ruediger, Zimmerer ;
Christian, Metzger Marc ;
Stefan, Schlager .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2019, 47 (07) :1054-1059
[4]  
Baldi P., 2012, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, P37
[5]   Evaluating White Matter Lesion Segmentations with Refined SOrensen-Dice Analysis [J].
Carass, Aaron ;
Roy, Snehashis ;
Gherman, Adrian ;
Reinhold, Jacob C. ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handels, Heinz ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Pham, Dzung L. ;
Crainiceanu, Ciprian M. ;
Calabresi, Peter A. ;
Prince, Jerry L. ;
Roncal, William R. Gray ;
Shinohara, Russell T. ;
Oguz, Ipek .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Computer-aided implant design for the restoration of cranial defects [J].
Chen, Xiaojun ;
Xu, Lu ;
Li, Xing ;
Egger, Jan .
SCIENTIFIC REPORTS, 2017, 7
[7]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[8]  
Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
[9]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[10]   DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images [J].
Devalla, Sripad Krishna ;
Renukanand, Prajwal K. ;
Sreedhar, Bharathwaj K. ;
Subramanian, Giridhar ;
Zhang, Liang ;
Perera, Shamira ;
Mari, Jean-Martial ;
Chin, Khai Sing ;
Tun, Tin A. ;
Strouthidis, Nicholas G. ;
Aung, Tin ;
Thiery, Alexandre H. ;
Girard, Michael J. A. .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07) :3244-3265