Quotients of the Highwater algebra and its cover

被引:4
作者
Franchi, C. [1 ]
Mainardis, M. [2 ]
McInroy, J. [3 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, Italy
[2] Univ Udine, Dipartimento Sci Matematiche Informat & Fis, Via Sci 206, I-33100 Udine, Italy
[3] Univ Chester, Dept Math, Parkgate Rd, Chester CH1 4BJ, England
关键词
Axial algebras; Finite simple groups; Monster group; Jordan algebras; Baric algebras; AXIAL ALGEBRAS;
D O I
10.1016/j.jalgebra.2023.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Primitive axial algebras of Monster type are a class of non -associative algebras with a strong link to finite (especially simple) groups. The motivating example is the Griess algebra, with the Monster as its automorphism group. A crucial step towards the understanding of such algebras is the explicit description of the 2-generated symmetric objects. Recent work of Yabe, and Franchi and Mainardis shows that any such algebra is either explicitly known, or is a quotient of the infinite-dimensional Highwater algebra 7-t, or its characteristic 5 cover 7-t.In this paper, we complete the classification of symmetric axial algebras of Monster type by determining the quotients of 7-t and 7-t. We proceed in a unified way, by defining a cover of 7-t in all characteristics. This cover has a previously unseen fusion law and provides an insight into why the Highwater algebra has a cover which is of Monster type only in characteristic 5.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:432 / 476
页数:45
相关论文
共 23 条
[1]   Decomposition algebras and axial algebras [J].
De Medts, Tom ;
Peacock, Simon F. ;
Shpectorov, Sergey ;
Van Couwenberghe, Michiel .
JOURNAL OF ALGEBRA, 2020, 556 :287-314
[2]   2-generated axial algebras of Monster type (2/3,/3) [J].
Franchi, Clara ;
Mainardis, Mario ;
Shpectorov, Sergey .
JOURNAL OF ALGEBRA, 2023, 636 :123-170
[3]  
Franchi C, 2024, Arxiv, DOI arXiv:2101.10315
[4]   Classifying 2-generated symmetric axial algebras of Monster type [J].
Franchi, Clara ;
Mainardis, Mario .
JOURNAL OF ALGEBRA, 2022, 596 :200-218
[5]   An infinite-dimensional 2-generated primitive axial algebra of Monster type [J].
Franchi, Clara ;
Mainardis, Mario ;
Shpectorov, Sergey .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) :1279-1293
[6]   Majorana Representations of Finite Groups [J].
Franchi, Clara ;
Ivanov, Alexander A. ;
Mainardis, Mario .
ALGEBRA COLLOQUIUM, 2020, 27 (01) :31-50
[7]   Double axes and subalgebras of Monster type in Matsuo algebras [J].
Galt, Alexey ;
Joshi, Vijay ;
Mamontov, Andrey ;
Shpectorov, Sergey ;
Staroletov, Alexey .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4208-4248
[8]   Primitive axial algebras of Jordan type [J].
Hall, J. I. ;
Rehren, F. ;
Shpectorov, S. .
JOURNAL OF ALGEBRA, 2015, 437 :79-115
[9]   Majorana representations of the symmetric group of degree 4 [J].
Ivanov, A. A. ;
Pasechnik, D. V. ;
Seress, A. ;
Shpectorov, S. .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2432-2463
[10]  
Ivanov A.A., 2009, Cambridge Tracts in Mathematics, V176