A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms

被引:0
|
作者
Mesloub, Said [1 ]
Alhazzani, Eman [1 ]
Eltayeb, Gadain Hassan [1 ]
机构
[1] King Saud Univ, Coll Sci, Math Dept, Riyadh 11451, Saudi Arabia
关键词
fractional Timoshenko system; memory term damping; frictional damping; non-local constraint; a priori estimate; well-posedness; DIFFERENTIAL-EQUATION; EXPONENTIAL DECAY; GLOBAL EXISTENCE; MIXED PROBLEM; ENERGY DECAY; STABILITY; MEMORY; BEAM; STABILIZATION;
D O I
10.3390/axioms12070689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are devoted to the study of a non-local non-homogeneous time fractional Timoshenko system with frictional and viscoelastic damping terms. We are concerned with the well-posedness of the given problem. The approach relies on some functional analysis tools, operator theory, a priori estimates and density arguments. This work can be considered as a contribution to the development of energy inequality methods, the so-called a priori estimate method inspired from functional analyses and used to prove the well-posedness of mixed problems with integral boundary conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On a Singular Non local Fractional System Describing a Generalized Timoshenko System with Two Frictional Damping Terms
    Mesloub, Said
    Alhefthi, Reem K. K.
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [2] On non-local and non-homogeneous elastic continua
    de Sciarra, Francesco Marotti
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (3-4) : 651 - 676
  • [3] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    Cavalcanti, M. M.
    Correa, W. J.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Zanchetta, J. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [4] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    M. M. Cavalcanti
    W. J. Corrêa
    V. N. Domingos Cavalcanti
    M. A. Jorge Silva
    J. P. Zanchetta
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [5] Analysis of non-homogeneous Timoshenko beams with generalized damping distributions
    Sorrentino, S.
    Fasana, A.
    Marchesiello, S.
    JOURNAL OF SOUND AND VIBRATION, 2007, 304 (3-5) : 779 - 792
  • [6] The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors
    Zingales, Massimiliano
    Failla, Giuseppe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 116 - 127
  • [7] Non-Homogeneous Thermoelastic Timoshenko Systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 461 - 484
  • [8] Non-Homogeneous Thermoelastic Timoshenko Systems
    M. S. Alves
    M. A. Jorge Silva
    T. F. Ma
    J. E. Muñoz Rivera
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 461 - 484
  • [9] Stability of Laminated Timoshenko Beams with Local Viscoelastic Versus Frictional Damping
    Duan, Yu-Ying
    Xiao, Ti-Jun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [10] A viscoelastic model with non-local damping application to the human lungs
    Grandmont, C
    Maury, B
    Meunier, N
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (01): : 201 - 224