Active regression model for clinical grading of COVID-19

被引:1
作者
Sh, Yuan [1 ,2 ]
Dong, Jierong [2 ]
Chen, Zhongqing [3 ]
Yuan, Meiqing [4 ]
Lyu, Lingna [5 ]
Zhang, Xiuli [2 ]
机构
[1] Fujian Med Univ, Sch Basic Med Sci, Fujian Prov Key Lab Brain Aging & Neurodegenerat D, Fuzhou, Fujian, Peoples R China
[2] Chinese Acad Sci, Key Lab Standardizat & Measurement Nanotechnol, Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol China,Key Lab Biomed Ef, Beijing, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 1, Fuzhou, Fujian, Peoples R China
[4] Minist Publ Secur, Inst Forens Sci, Key Lab Forens Genet, Beijing, Peoples R China
[5] Capital Med Univ, Beijing Youan Hosp, Dept Gastroenterol & Hepatol, Beijing, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
中国博士后科学基金; 北京市自然科学基金;
关键词
COVID-19; deep learning; active regression; feature engineering; clinical data; DIAGNOSIS; SEVERITY; DISEASE;
D O I
10.3389/fimmu.2023.1141996
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundIn the therapeutic process of COVID-19, the majority of indicators that physicians have for assisting treatment have come from clinical tests represented by proteins, metabolites, and immune levels in patients' blood. Therefore, this study constructs an individualized treatment model based on deep learning methods, aiming to realize timely intervention based on clinical test indicator data of COVID-19 patients and provide an important theoretical basis for optimizing medical resource allocation. MethodsThis study collected clinical data from a total of 1,799 individuals, including 560 controls for non-respiratory infectious diseases (Negative), 681 controls for other respiratory virus infections (Other), and 558 coronavirus infections (Positive) for COVID-19. We first used the Student T-test to screen for statistically significant differences (Pvalue<0.05); we then used the Adaptive-Lasso method stepwise regression to screen the characteristic variables and filter the features with low importance; we then used analysis of covariance to calculate the correlation between variables and filter the highly correlated features; and finally, we analyzed the feature contribution and screened the best combination of features. ResultsFeature engineering reduced the feature set to 13 feature combinations. The correlation coefficient between the projected results of the artificial intelligence-based individualized diagnostic model and the fitted curve of the actual values in the test group was 0.9449 which could be applied to the clinical prognosis of COVID-19. In addition, the depletion of platelets in patients with COVID-19 is an important factor affecting their severe deterioration. With the progression of COVID-19, there is a slight decrease in the total number of platelets in the patient's body, particularly as the volume of larger platelets sharply decreases. The importance of plateletCV (count*mean platelet volume) in evaluating the severity of COVID-19 patients is higher than the count of platelets and mean platelet volume. ConclusionIn general, we found that for patients with COVID-19, the increase in mean platelet volume was a predictor for SARS-Cov-2. The rapid decrease of platelet volume and the decrease of total platelet volume are dangerous signals for the aggravation of SARS-Cov-2 infection. The analysis and modeling results of this study provide a new perspective for individualized accurate diagnosis and treatment of clinical COVID-19 patients.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Levelized Multiple Workflow Allocation Strategy Under Precedence Constraints With Task Merging in IaaS Cloud Environment [J].
Ahmad, Faisal ;
Shahid, Mohammad ;
Alam, Mahfooz ;
Ashraf, Zubair ;
Sajid, Mohammad ;
Kotecha, Ketan ;
Dhiman, Gaurav .
IEEE ACCESS, 2022, 10 :92809-92827
[2]   Artificial intelligence and machine learning to fight COVID-19 [J].
Alimadadi, Ahmad ;
Aryal, Sachin ;
Manandhar, Ishan ;
Munroe, Patricia B. ;
Joe, Bina ;
Cheng, Xi .
PHYSIOLOGICAL GENOMICS, 2020, 52 (04) :200-202
[3]   Stress, Anxiety, and Depression in Pre-Clinical Medical Students: Prevalence and Association with Sleep Disorders [J].
Alrashed, Fahad Abdulaziz ;
Alsubiheen, Abdulrahman M. ;
Alshammari, Hessah ;
Mazi, Sarah Ismail ;
Abou Al-Saud, Sara ;
Alayoubi, Samha ;
Kachanathu, Shaji John ;
Albarrati, Ali ;
Aldaihan, Mishal M. ;
Ahmad, Tauseef ;
Sattar, Kamran ;
Khan, Shakir ;
Dhiman, Gaurav .
SUSTAINABILITY, 2022, 14 (18)
[4]   Effectiveness of COVID-19 diagnosis and management tools: A review [J].
Alsharif, W. ;
Qurashi, A. .
RADIOGRAPHY, 2021, 27 (02) :682-687
[5]   Blood coagulation parameter abnormalities in hospitalized patients with confirmed COVID-19 in Ethiopia [J].
Araya, Shambel ;
Mamo, Mintesnot Aragaw ;
Tsegay, Yakob Gebregziabher ;
Atlaw, Asegdew ;
Aytenew, Aschalew ;
Hordofa, Abebe ;
Negeso, Abebe Edao ;
Wordofa, Moges ;
Niguse, Tirhas ;
Cheru, Mahlet ;
Tamir, Zemenu .
PLOS ONE, 2021, 16 (06)
[6]   COVID-19-associated coagulopathy and disseminated intravascular coagulation [J].
Asakura, Hidesaku ;
Ogawa, Haruhiko .
INTERNATIONAL JOURNAL OF HEMATOLOGY, 2021, 113 (01) :45-57
[7]   Platelets contribute to disease severity in COVID-19 [J].
Barrett, Tessa J. ;
Bilaloglu, Seda ;
Cornwell, Macintosh ;
Burgess, Hannah M. ;
Virginio, Vitor W. ;
Drenkova, Kamelia ;
Ibrahim, Homam ;
Yuriditsky, Eugene ;
Aphinyanaphongs, Yin ;
Lifshitz, Mark ;
Liang, Feng Xia ;
Alejo, Julie ;
Smith, Grace ;
Pittaluga, Stefania ;
Rapkiewicz, Amy, V ;
Wang, Jun ;
Iancu-Rubin, Camelia ;
Mohr, Ian ;
Ruggles, Kelly ;
Stapleford, Kenneth A. ;
Hochman, Judith ;
Berger, Jeffrey S. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2021, 19 (12) :3139-3153
[8]   Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19 [J].
Bellan, Mattia ;
Azzolina, Danila ;
Hayden, Eyal ;
Gaidano, Gianluca ;
Pirisi, Mario ;
Acquaviva, Antonio ;
Aimaretti, Gianluca ;
Aluffi Valletti, Paolo ;
Angilletta, Roberto ;
Arioli, Roberto ;
Avanzi, Gian Carlo ;
Avino, Gianluca ;
Balbo, Piero Emilio ;
Baldon, Giulia ;
Baorda, Francesca ;
Barbero, Emanuela ;
Baricich, Alessio ;
Barini, Michela ;
Barone-Adesi, Francesco ;
Battistini, Sofia ;
Beltrame, Michela ;
Bertoli, Matteo ;
Bertolin, Stephanie ;
Bertolotti, Marinella ;
Betti, Marta ;
Bobbio, Flavio ;
Boffano, Paolo ;
Boglione, Lucio ;
Borre, Silvio ;
Brucoli, Matteo ;
Calzaducca, Elisa ;
Cammarata, Edoardo ;
Cantaluppi, Vincenzo ;
Cantello, Roberto ;
Capponi, Andrea ;
Carriero, Alessandro ;
Casciaro, Giuseppe Francesco ;
Castello, Luigi Mario ;
Ceruti, Federico ;
Chichino, Guido ;
Chirico, Emilio ;
Cisari, Carlo ;
Cittone, Micol Giulia ;
Colombo, Crizia ;
Comi, Cristoforo ;
Croce, Eleonora ;
Daffara, Tommaso ;
Danna, Pietro ;
Della Corte, Francesco ;
De Vecchi, Simona .
DISEASE MARKERS, 2021, 2021
[9]   Decline of Humoral and Cellular Immune Responses Against SARS-CoV-2 6 Months After Full BNT162b2 Vaccination in Hospital Healthcare Workers [J].
Bonnet, Benjamin ;
Chabrolles, Helene ;
Archimbaud, Christine ;
Brebion, Amelie ;
Cosme, Justine ;
Dutheil, Frederic ;
Lambert, Celine ;
Junda, Maud ;
Mirand, Audrey ;
Ollier, Amandine ;
Pereira, Bruno ;
Regagnon, Christel ;
Vidal, Magali ;
Evrard, Bertrand ;
Henquell, Cecile .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[10]   Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis [J].
Chu, S. G. ;
Becker, R. C. ;
Berger, P. B. ;
Bhatt, D. L. ;
Eikelboom, J. W. ;
Konkle, B. ;
Mohler, E. R. ;
Reilly, M. P. ;
Berger, J. S. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2010, 8 (01) :148-156