DECOMPOSITION METHODS FOR GLOBAL SOLUTION OF MIXED-INTEGER LINEAR PROGRAMS

被引:0
|
作者
Sun, Kaizhao [1 ,2 ]
Sun, Mou [3 ]
Yin, Wotao [2 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Alibaba Grp US, DAMO Acad, Decis Intelligence Lab, Bellevue, WA 98004 USA
[3] Alibaba Grp, DAMO Acad, Decis Intelligence Lab, Hangzhou, Zhejiang, Peoples R China
关键词
mixed-integer linear programs; decomposition method; augmented Lagrangian method; alternating direction method of multipliers; MODIFIED SUBGRADIENT ALGORITHM; ALTERNATING DIRECTION METHOD; 2-STAGE STOCHASTIC PROGRAMS; L-SHAPED METHOD; DUAL PROBLEMS; BRANCH; ADMM; CUTS;
D O I
10.1137/22M1487321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces two decomposition -based methods for two -block mixed -integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower -dimensional MILPs. The first method is based on the L-1 -augmented Lagrangian method, and the second one is based on a modified alternating direction method of multipliers. In the presence of certain block -angular structures, both methods create parallel subproblems in one block of variables and add nonconvex cuts to update the other block; they converge to globally optimal solutions of the original MILP under proper conditions. Numerical experiments on three classes of MILPs demonstrate the advantages of the proposed methods on structured problems over the state-of-the-art MILP solvers.
引用
收藏
页码:1206 / 1235
页数:30
相关论文
共 50 条
  • [41] Performance Analysis of Mixed-Integer Conic and Mixed-Integer Linear Unit Commitment Models
    Savasci, Alper
    Inaolaji, Adedoyin
    Paudyal, Sumit
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [42] A solution framework for linear PDE-constrained mixed-integer problems
    Gnegel, Fabian
    Fuegenschuh, Armin
    Hagel, Michael
    Leyffer, Sven
    Stiemer, Marcus
    MATHEMATICAL PROGRAMMING, 2021, 188 (02) : 695 - 728
  • [43] Global mixed-integer dynamic optimization
    Chachuat, B
    Singer, AB
    Barton, PI
    AICHE JOURNAL, 2005, 51 (08) : 2235 - 2253
  • [44] A solution framework for linear PDE-constrained mixed-integer problems
    Fabian Gnegel
    Armin Fügenschuh
    Michael Hagel
    Sven Leyffer
    Marcus Stiemer
    Mathematical Programming, 2021, 188 : 695 - 728
  • [45] A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs
    Fischetti, Matteo
    Ljubic, Ivana
    Monaci, Michele
    Sinnl, Markus
    OPERATIONS RESEARCH, 2017, 65 (06) : 1615 - 1637
  • [46] SPECTRAL RELAXATIONS AND BRANCHING STRATEGIES FOR GLOBAL OPTIMIZATION OF MIXED-INTEGER QUADRATIC PROGRAMS
    Nohra, Carlos J.
    Raghunathan, Arvind U.
    Sahinidis, Nikolaos
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 142 - 171
  • [47] A hierarchy of bounds for stochastic mixed-integer programs
    Burhaneddin Sandıkçı
    Nan Kong
    Andrew J. Schaefer
    Mathematical Programming, 2013, 138 : 253 - 272
  • [48] Predicting the Solution Time of Branch-and-Bound Algorithms for Mixed-Integer Programs
    Oezaltin, Osman Y.
    Hunsaker, Brady
    Schaefer, Andrew J.
    INFORMS JOURNAL ON COMPUTING, 2011, 23 (03) : 392 - 403
  • [49] A STRONG DUAL FOR CONIC MIXED-INTEGER PROGRAMS
    Moran R, Diego A.
    Dey, Santanu S.
    Vielma, Juan Pablo
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) : 1136 - 1150
  • [50] AN EXACT PENALTY METHOD FOR MIXED-INTEGER PROGRAMS
    BLAIR, CE
    JEROSLOW, RG
    MATHEMATICS OF OPERATIONS RESEARCH, 1981, 6 (01) : 14 - 18