Carbon nanotube supported zinc, cobalt, nitrogen, sulfur-doped porous carbon as electrocatalyst for enhanced oxygen reduction reaction

被引:4
|
作者
Gao, Haili [1 ]
Zhao, Jingfang [1 ]
Ma, Yaqiong [1 ]
Liu, Yunpeng [1 ]
Zhang, Yong [1 ]
Zhang, Linsen [1 ]
Yin, Zhigang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Mat & Chem Engn, Zhengzhou 450001, Peoples R China
关键词
Oxygen reduction reaction; Zeolitic imidazolate framework; Fuel cell; Non-noble metal catalyst; Carbon nanotube; METAL-FREE ELECTROCATALYST; HIGHLY EFFICIENT; GRAPHENE OXIDE; CATALYST; FE; CO; COMPOSITES; SITES; ZIF-8; ANODE;
D O I
10.1016/j.ijhydene.2023.09.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotube (CNT) supported zinc, cobalt, nitrogen, sulfur-doped porous carbon (CNT@ZnCo/NSC) catalysts are prepared by in situ growth of sulfur-containing bimetal zeolitic imidazolate framework (S-ZnCo-ZIF) polyhedrons on CNT with subsequent heat treatment. The microstructure, morphology, particle size distribution, specific surface area, and pore-size distribution of the catalysts are characterized by multiple techniques. CNT@ZnCo/NSC exhibits excellent catalytic activity for oxygen reduction reaction (ORR) with onset potential of 0.98 V and half-wave potential of 0.83 V, respectively, which are close to those of Pt/C. The addition of CNT inhibits the agglomeration and improves the conductivity of the catalysts, while S doping enhances the electrochemical surface area and introduces active sites. The special structure makes CNT@ZnCo/NSC possess proper specific surface area (390.8 m(2) g(-1)) and large average pore size (5.26 nm). CNT@ZnCo/NSC contains more graphite-N (21%) and pyridine-N (55.9%) than CNT@ZnCo/NC (20%, 46.5%) and ZnCo/NC (8.2%, 45.8%). CNT@ZnCo/NSC catalyst has better methanol tolerance and long-term stability than commercial Pt/C. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1229 / 1241
页数:13
相关论文
共 50 条
  • [1] Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction
    Shen Hai-Bo
    Jiang Hao
    Liu Yi-Si
    Hao Jia-Yu
    Li Wen-Zhang
    Li Jie
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (09) : 1811 - 1821
  • [2] Paper-derived cobalt and nitrogen co-doped carbon nanotube@porous carbon as a nonprecious metal electrocatalyst for the oxygen reduction reaction
    Liu, Gaopeng
    Wang, Bin
    Xu, Li
    Ding, Penghui
    Zhang, Pengfei
    Xia, Jiexiang
    Li, Huaming
    Qian, Junchao
    CHINESE JOURNAL OF CATALYSIS, 2018, 39 (04) : 790 - 799
  • [3] Enhanced Electrocatalytic Activity of Cobalt-Doped Ceria Embedded on Nitrogen, Sulfur-Doped Reduced Graphene Oxide as an Electrocatalyst for Oxygen Reduction Reaction
    Sridharan, Manickam
    Maiyalagan, Thandavarayan
    Panomsuwan, Gasidit
    Techapiesancharoenkij, Ratchatee
    CATALYSTS, 2022, 12 (01)
  • [4] Sulfur-Doped Ordered Mesoporous Carbon as Fuel Cell Electrocatalyst for Oxygen Reduction
    Wang Hai-Wen
    Wang Yi-Dan
    Mao Qian-Long
    An Guo-Qiang
    Che Qiang
    Zhang Shun-Jiang
    Yin Xin
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (03) : 369 - 375
  • [5] Iron, Cobalt, and Nitrogen Tri-Doped Ordered Mesoporous Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction
    Ran, Wu
    Dong, Jing
    Sun, Tingting
    Chen, Jianfeng
    Xu, Lianbin
    CHEMISTRYSELECT, 2019, 4 (26): : 7728 - 7733
  • [6] Cobalt encapsulated in the nitrogen and sulfur co-doped carbon nanotube supported platinum for the oxygen reduction reaction catalyst
    Kim, Tae-Hyun
    Jung, Chi-Young
    Bose, Ranjith
    Yi, Sung-Chul
    CARBON, 2018, 139 : 656 - 665
  • [7] Ni/Cu Regulating Nitrogen-Doped Porous Carbon as Electrocatalyst for Oxygen Reduction Reaction
    Hu, Hao
    Liang, Jia-Hao
    Zu, Zhao-Yang
    Mi, Jian-Li
    Xiao, Bei-Bei
    Zhang, Peng
    CHEMISTRYSELECT, 2021, 6 (27): : 6949 - 6956
  • [8] A noble silver nanoflower on nitrogen doped carbon nanotube for enhanced oxygen reduction reaction
    Yasmin, Sabina
    Ahmed, Mohammad Shamsuddin
    Jeon, Seungwon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) : 1075 - 1084
  • [9] Cobalt/nitrogen doped hollow carbon sphere-bamboo like carbon nanotube for highly efficient oxygen reduction reaction
    Gao, Haili
    Ma, Zheng
    Zhao, Jingfang
    Lin, Jing
    Gao, Kezheng
    Zhang, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 999
  • [10] Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction
    Kim, Jaemun
    Noh, Sunguk
    Shim, Jun Ho
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 937