On Frequency-Based Log-Optimal Portfolio With Transaction Costs

被引:1
作者
Wong, Yi-Shan [1 ]
Hsieh, Chung-Han [2 ]
机构
[1] Cathay Life Insurance, Actuarial Dept 1, Taipei 106436, Taiwan
[2] Natl Tsing Hua Univ, Dept Quantitat Finance, Hsinchu 300044, Taiwan
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Portfolio optimization; transaction costs; control and optimization; log-optimal portfolio; rebalancing frequency; OPTIMIZATION;
D O I
10.1109/LCSYS.2023.3334951
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.
引用
收藏
页码:3489 / 3494
页数:6
相关论文
共 32 条
  • [1] ASYMPTOTIC OPTIMALITY AND ASYMPTOTIC EQUIPARTITION PROPERTIES OF LOG-OPTIMUM INVESTMENT
    ALGOET, PH
    COVER, TM
    [J]. ANNALS OF PROBABILITY, 1988, 16 (02) : 876 - 898
  • [2] Almgren R, 2001, J RISK, V3, P5, DOI DOI 10.21314/JOR.2001.041
  • [3] Bertsimas D, 1998, J FINANCIAL MARKETS, V1, P1, DOI DOI 10.1016/S1386-4181(97)00012-8
  • [4] Boyd S., 2004, Convex Optimization
  • [5] Cornuejols G, 2007, MATH FINANC RISK, P1
  • [6] Cover T. M., 1984, IEEE Transactions on Information Theory, VIT-30, P369, DOI 10.1109/TIT.1984.1056869
  • [7] Cover T. M., 1999, Elements of Information Theory
  • [8] Cvitanic J., 2004, INTRO EC MATH FINANC
  • [9] Computing optimal rebalance frequency for log-optimal portfolios in linear time
    Das, Sujit R.
    Goyal, Mukul
    [J]. QUANTITATIVE FINANCE, 2015, 15 (07) : 1191 - 1204
  • [10] Computing optimal rebalance frequency for log-optimal portfolios
    Das, Sujit R.
    Kaznachey, Dmitri
    Goyal, Mukul
    [J]. QUANTITATIVE FINANCE, 2014, 14 (08) : 1489 - 1502