Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear-Quadratic Control Problems in the Critical Case

被引:0
作者
Kurina, G. A. [1 ,2 ]
Hoai, Nguyen Thi [3 ]
机构
[1] Voronezh State Univ, Voronezh 394018, Russia
[2] Russian Acad Sci, Fed Res Ctr Informat & Control, Moscow 119333, Russia
[3] Vietnam Natl Univ, Univ Sci, Hanoi, Vietnam
基金
俄罗斯科学基金会;
关键词
linear-quadratic control problem; singular perturbations; critical case; asymptotics of solution; TIME;
D O I
10.1134/S0081543823030148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a linear-quadratic control problem in which there is the second power of a small parameter at the derivative of the state variable and the first power of the parameter both in the control term of the state equation and at the quadratic form with respect to the control variable in the performance index; moreover, the state equation represents a critical case of singular perturbation theory. A zero-order asymptotic expansion of the solution is constructed using the so-called direct scheme method in which a postulated asymptotic expansion of the solution is substituted directly into the problem statement and problems for finding the asymptotic terms are stated.
引用
收藏
页码:S154 / S169
页数:16
相关论文
共 16 条
  • [1] BELOKOPYTOV SV, 1989, AUTOMAT REM CONTR+, V50, P907
  • [2] Butuzov V.F., 1976, Differents. Uravnen, V12, P1736
  • [3] Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set
    Danilin, A. R.
    Kovrizhnykh, O. O.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (01): : 48 - 61
  • [4] Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case
    Danilin, Aleksei Rufimovich
    Kovrizhnykh, Ol'ga Olegovna
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (01): : 58 - 73
  • [5] Danilin AR, 2017, T I MAT MEKH URO RAN, V23, P42, DOI 10.21538/0134-4889-2017-23-2-42-66
  • [6] Dmitriev MG., 1999, Program Systems: Theoretical Foundations and Applications
  • [7] Elsgolts L. E., 1965, Differential Equations and Calculus of Variations
  • [8] Kato T., 1995, PERTURBATION THEORY, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9]
  • [9] Singularly Perturbed Problems with Multi-Tempo Fast Variables
    Kurina, G. A.
    Kalashnikova, M. A.
    [J]. AUTOMATION AND REMOTE CONTROL, 2022, 83 (11) : 1679 - 1723
  • [10] Projector Approach to the Butuzov-Nefedov Algorithm for Asymptotic Solution of a Class of Singularly Perturbed Problems in a Critical Case
    Kurina, G. A.
    Hoai, N. T.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (12) : 2007 - 2018