Using DUCK-Net for polyp image segmentation

被引:49
作者
Dumitru, Razvan-Gabriel
Peteleaza, Darius
Craciun, Catalin
机构
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
DEEP; VALIDATION;
D O I
10.1038/s41598-023-36940-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a novel supervised convolutional neural network architecture, "DUCK-Net", capable of effectively learning and generalizing from small amounts of medical images to perform accurate segmentation tasks. Our model utilizes an encoder-decoder structure with a residual downsampling mechanism and a custom convolutional block to capture and process image information at multiple resolutions in the encoder segment. We employ data augmentation techniques to enrich the training set, thus increasing our model's performance. While our architecture is versatile and applicable to various segmentation tasks, in this study, we demonstrate its capabilities specifically for polyp segmentation in colonoscopy images. We evaluate the performance of our method on several popular benchmark datasets for polyp segmentation, Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, and ETIS-LARIBPOLYPDB showing that it achieves state-of-the-art results in terms of mean Dice coefficient, Jaccard index, Precision, Recall, and Accuracy. Our approach demonstrates strong generalization capabilities, achieving excellent performance even with limited training data.
引用
收藏
页数:12
相关论文
共 42 条
  • [1] Abadi M., 2015, TensorFlow. Large-Scale Machine Learning on Heterogeneous Systems, V1
  • [2] A State-of-the-Art Survey on Deep Learning Theory and Architectures
    Alom, Md Zahangir
    Taha, Tarek M.
    Yakopcic, Chris
    Westberg, Stefan
    Sidike, Paheding
    Nasrin, Mst Shamima
    Hasan, Mahmudul
    Van Essen, Brian C.
    Awwal, Abdul A. S.
    Asari, Vijayan K.
    [J]. ELECTRONICS, 2019, 8 (03)
  • [3] American Cancer Society, 2021, COL CANC EARL DET DI
  • [4] Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge
    Bernal, Jorge
    Tajkbaksh, Nima
    Sanchez, Francisco Javier
    Matuszewski, Bogdan J.
    Chen, Hao
    Yu, Lequan
    Angermann, Quentin
    Romain, Olivier
    Rustad, Bjorn
    Balasingham, Ilangko
    Pogorelov, Konstantin
    Choi, Sungbin
    Debard, Quentin
    Maier-Hein, Lena
    Speidel, Stefanie
    Stoyanov, Danail
    Brandao, Patrick
    Cordova, Henry
    Sanchez-Montes, Cristina
    Gurudu, Suryakanth R.
    Fernandez-Esparrach, Gloria
    Dray, Xavier
    Liang, Jianming
    Histace, Aymeric
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) : 1231 - 1249
  • [5] WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians
    Bernal, Jorge
    Javier Sanchez, F.
    Fernandez-Esparrach, Gloria
    Gil, Debora
    Rodriguez, Cristina
    Vilarino, Fernando
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 99 - 111
  • [6] A Close Look at Deep Learning with Small Data
    Brigato, Lorenzo
    Iocchi, Luca
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2490 - 2497
  • [7] Albumentations: Fast and Flexible Image Augmentations
    Buslaev, Alexander
    Iglovikov, Vladimir I.
    Khvedchenya, Eugene
    Parinov, Alex
    Druzhinin, Mikhail
    Kalinin, Alexandr A.
    [J]. INFORMATION, 2020, 11 (02)
  • [8] Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
  • [9] Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
  • [10] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851