High-efficiency organic solar cells processed from a halogen-free solvent system

被引:21
作者
Su, Yueling [1 ]
Ding, Zicheng [1 ]
Zhang, Rui [2 ]
Tang, Weibing [1 ]
Huang, Wenliang [1 ]
Wang, Zhichao [1 ]
Zhao, Kui [1 ]
Wang, Xiaochen [1 ]
Liu, Shengzhong [1 ,3 ]
Li, Yongfang [1 ,4 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Shaanxi Engn La, Xian 710119, Peoples R China
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, iChEM, Dalian 116023, Peoples R China
[4] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
organic solar cells; small molecule acceptor; film microstructure; non-halogenated solvent; solvent engineering; OPEN-CIRCUIT VOLTAGE; MORPHOLOGY; TRANSPORT; STRATEGY;
D O I
10.1007/s11426-023-1608-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of non-halogenated solvents for the green manufacture of high-efficiency organic solar cells (OSCs) is important for their future application. However, the power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is generally lower than their halogenated counterpart due to the poor film microstructure caused by the solubility issue. Herein, we propose a halogen-free solvent system to optimize film microstructure of the photovoltaic blend based on the polymer donor D18 and small-molecule acceptor (SMA) L8-BO towards high-efficiency OSCs. The solvent system is consisted of a main solvent carbon disulfide and an additive paraxylene, where the former ensures the good solution-processability and promotes the solution aggregation of L8-BO, and the latter can finely control the phase-separation process by selectively dissolving the SMA. This solvent combination robustly produces a high-quality active layer, i.e., the bicontinuous networks of donor and acceptor with nano-sized phase-separation and strong & pi;-& pi; stacking. With the effective charge generation, transport and collection, the resulting device from the non-halogenated solvent system shows a high PCE of 17.50%, which is comparable to that of the device prepared from the halogenated solvent chloroform (ca. 17.11%). This article proposes a new strategy for the green fabrication of high-efficiency OSCs to accelerate their industrialization.
引用
收藏
页码:2380 / 2388
页数:9
相关论文
共 56 条
[1]   Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics [J].
Bi, Pengqing ;
Wang, Jianqiu ;
Cui, Yong ;
Zhang, Jianqi ;
Zhang, Tao ;
Chen, Zhihao ;
Qiao, Jiawei ;
Dai, Jiangbo ;
Zhang, Shaoqing ;
Hao, Xiaotao ;
Wei, Zhixiang ;
Hou, Jianhui .
ADVANCED MATERIALS, 2023, 35 (16)
[2]   A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents [J].
Chen, Haiyang ;
Zhang, Rui ;
Chen, Xiaobin ;
Zeng, Guang ;
Kobera, Libor ;
Abbrent, Sabina ;
Zhang, Ben ;
Chen, Weijie ;
Xu, Guiying ;
Oh, Jiyeon ;
Kang, So-Huei ;
Chen, Shanshan ;
Yang, Changduk ;
Brus, Jiri ;
Hou, Jianhui ;
Gao, Feng ;
Li, Yaowen ;
Li, Yongfang .
NATURE ENERGY, 2021, 6 (11) :1045-1053
[3]   17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor [J].
Chen, Hui ;
Lai, Hanjian ;
Chen, Ziyi ;
Zhu, Yulin ;
Wang, Huan ;
Han, Liang ;
Zhang, Yuanzhu ;
He, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3238-3246
[4]   High-performing organic electronics using terpene green solvents from renewable feedstocks [J].
Corzo, Daniel ;
Rosas-Villalva, Diego ;
Amruth, C. ;
Tostado-Blazquez, Guillermo ;
Alexandre, Emily Bezerra ;
Hernandez, Luis Huerta ;
Han, Jianhua ;
Xu, Han ;
Babics, Maxime ;
De Wolf, Stefaan ;
Baran, Derya .
NATURE ENERGY, 2023, 8 (01) :62-+
[5]   Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films [J].
Ding, Zicheng ;
Liu, Dongle ;
Zhao, Kui ;
Han, Yanchun .
MACROMOLECULES, 2021, 54 (09) :3907-3926
[6]   Hot-Casting Boosts Efficiency of Halogen-Free Solvent Processed Non-Fullerene Organic Solar Cells [J].
Du, Baocai ;
Ma, Yunlong ;
Guo, Chuanhang ;
Cai, Jinlong ;
Li, Donghui ;
Cheng, Shili ;
Liu, Dan ;
Zheng, Qingdong ;
Wang, Tao .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (45)
[7]   Enabling High Efficiency of Hydrocarbon-Solvent Processed Organic Solar Cells through Balanced Charge Generation and Non-Radiative Loss [J].
Fan, Baobing ;
Lin, Francis ;
Oh, Jiyeon ;
Fu, Huiting ;
Gao, Wei ;
Fan, Qunping ;
Zhu, Zonglong ;
Li, Wen Jung ;
Li, Ning ;
Ying, Lei ;
Huang, Fei ;
Yang, Changduk ;
Jen, Alex K. Y. .
ADVANCED ENERGY MATERIALS, 2021, 11 (41)
[8]   Synergistic effect of solvent and solid additives on morphology optimization for high-performance organic solar cells [J].
Fan, Chenling ;
Yang, Hang ;
Zhang, Qing ;
Bao, Sunan ;
Fan, Hongyu ;
Zhu, Xianming ;
Cui, Chaohua ;
Li, Yongfang .
SCIENCE CHINA-CHEMISTRY, 2021, 64 (11) :2017-2024
[9]   Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor [J].
Gao, Wei ;
Qi, Feng ;
Peng, Zhengxing ;
Lin, Francis R. ;
Jiang, Kui ;
Zhong, Cheng ;
Kaminsky, Werner ;
Guan, Zhiqiang ;
Lee, Chun-Sing ;
Marks, Tobin J. ;
Ade, Harald ;
Jen, Alex K-Y .
ADVANCED MATERIALS, 2022, 34 (32)
[10]   Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics [J].
He, Chengliang ;
Pan, Youwen ;
Ouyang, Yanni ;
Shen, Qing ;
Gao, Yuan ;
Yan, Kangrong ;
Fang, Jin ;
Chen, Yiyao ;
Ma, Chang-Qi ;
Min, Jie ;
Zhang, Chunfeng ;
Zuo, Lijian ;
Chen, Hongzheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (06) :2537-2544