Trajectory Learning by Therapists' Demonstrations for an Upper Limb Rehabilitation Exoskeleton

被引:7
作者
Luciani, Beatrice [1 ,2 ,3 ]
Roveda, Loris [4 ]
Braghin, Francesco [2 ,3 ]
Pedrocchi, Alessandra [1 ,3 ]
Gandolla, Marta [1 ,2 ,3 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, NearLab, I-20133 Milan, Italy
[2] Politecn Milan, Dept Mech Engn, I-20156 Milan, Italy
[3] Politecn Milan, WE COBOT Lab, Polo Terr Lecco, I-23900 Lecce, Italy
[4] Univ Svizzera italiana USI, Scuola Univ Profess Svizzera Italiana SUPSI, Ist Dalle Molle Studi Intelligenza Artificiale IDS, CH-6962 Lugano, Switzerland
关键词
Learning by demonstrations; rehabilitation exoskeletons; physiotherapists; Hidden Markov Models; trajectory planning; HIDDEN MARKOV-MODELS; ROBOT; ALGORITHM;
D O I
10.1109/LRA.2023.3285081
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this work, we propose a method for trajectory implementation based on the Learning by Demonstrations approach to deal with trajectory planning issues in upper-limb rehabilitation exoskeletons. Currently applied path-planning methods use mathematical trajectories or Teach-and-play approaches. The former do not propose human-like movements to patients, which is crucial to induce correct motor relearning. Moreover, they often differ from therapists' expectations of how movements should be executed, reducing the acceptability and use of exoskeletons in hospitals. The latter, using a single filtered trajectory demonstration, better meet therapists' expectations but lack consistency and optimization. In our approach, we employed Hidden Markov Models, still never used for rehabilitation robotics, to study a set of demonstrations and we optimized the results to respect physiological muscular activation patterns. Recorded few repetitions of a movement from the interaction of a therapist with an exoskeleton, our machine-learning-based algorithm returns a ready-to-use trajectory representing the therapist's desires. We tested our method on a 4 degrees-of-freedom exoskeleton to record 5 exercises, interacting with 5 therapists. Comparing our trajectories with those obtained with literature methods, we see that our approach produces better kinematic and human-likeness results, and is better according to the global opinion expressed by the therapists.
引用
收藏
页码:4561 / 4568
页数:8
相关论文
共 34 条
[1]  
Amirabdollahian F, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P3380, DOI 10.1109/ROBOT.2002.1014233
[2]   Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots [J].
Averta, Giuseppe ;
Della Santina, Cosimo ;
Valenza, Gaetano ;
Bicchi, Antonio ;
Bianchi, Matteo .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2020, 17 (01)
[3]   A Robust and Sensitive Metric for Quantifying Movement Smoothness [J].
Balasubramanian, Sivakumar ;
Melendez-Calderon, Alejandro ;
Burdet, Etienne .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (08) :2126-2136
[4]   Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on Human Inverse Kinematics [J].
Brahmi, Brahim ;
Saad, Maarouf ;
Rahman, Mohammad H. ;
Ochoa-Luna, Cristobal .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (03) :600-611
[5]   A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex [J].
Buccelli, Stefano ;
Tessari, Federico ;
Fanin, Fausto ;
De Guglielmo, Luca ;
Capitta, Gianluca ;
Piezzo, Chiara ;
Bruschi, Agnese ;
Van Son, Frank ;
Scarpetta, Silvia ;
Succi, Antonio ;
Rossi, Paolo ;
Maludrottu, Stefano ;
Barresi, Giacinto ;
Creatini, Ilaria ;
Taglione, Elisa ;
Laffranchi, Matteo ;
De Michieli, Lorenzo .
APPLIED SCIENCES-BASEL, 2022, 12 (07)
[6]  
Calinon Sylvain, 2018, Encyclopedia of Rob., P1, DOI [10.1007/978-3-642-41610-1_27-1, DOI 10.1007/978-3-642-41610-1_27-1]
[7]  
Chernova S., 2014, SYNTHESIS LECT ARTIF, V8, P1, DOI [DOI 10.2200/S00568ED1V01Y201402AIM028, 10.2200/S00568ED1V01Y201402AIM028]
[8]   Interjoint coordination dynamics during reaching in stroke [J].
Cirstea, MC ;
Mitnitski, AB ;
Feldman, AG ;
Levin, MF .
EXPERIMENTAL BRAIN RESEARCH, 2003, 151 (03) :289-300
[9]   AGREE: A Compliant-Controlled Upper-Limb Exoskeleton for Physical Rehabilitation of Neurological Patients [J].
Dalla Gasperina, Stefano ;
Gandolla, Marta ;
Longatelli, Valeria ;
Panzenbeck, Mattia ;
Luciani, Beatrice ;
Braghin, Francesco ;
Pedrocchi, Alessandra .
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (01) :143-154
[10]   Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons [J].
Dalla Gasperina, Stefano ;
Roveda, Loris ;
Pedrocchi, Alessandra ;
Braghin, Francesco ;
Gandolla, Marta .
FRONTIERS IN ROBOTICS AND AI, 2021, 8