Derivations of two-step nilpotent algebras

被引:3
作者
La Rosa, Gianmarco [1 ]
Mancini, Manuel [1 ,2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Palermo, Italy
[2] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Almost inner derivation; derivation; Lie algebra; Lie theory; Leibniz algebra; nilpotent Leibniz algebra; INNER DERIVATIONS; LIE-ALGEBRAS;
D O I
10.1080/00927872.2023.2222415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the Lie algebras of derivations of two-step nilpotent algebras. We obtain a class of Lie algebras with trivial center and abelian ideal of inner derivations. Among these, the relations between the complex and the real case of the indecomposable Heisenberg Leibniz algebras are thoroughly described. Finally we show that every almost inner derivation of a complex nilpotent Leibniz algebra with one-dimensional commutator ideal, with three exceptions, is an inner derivation.
引用
收藏
页码:4928 / 4948
页数:21
相关论文
共 17 条
  • [11] The action of a compact Lie group on nilpotent Lie algebras of type {n, 2}
    Falcone, Giovanni
    Figula, Agota
    [J]. FORUM MATHEMATICUM, 2016, 28 (04) : 795 - 806
  • [12] The geometric classification of 2-step nilpotent algebras and applications
    Ignatyev, Mikhail
    Kaygorodov, Ivan
    Popov, Yury
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (03): : 907 - 922
  • [13] Degenerations of noncommutative Heisenberg algebras
    Kaygorodov, Ivan
    Volkov, Yury
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4204 - 4213
  • [14] Two-step nilpotent Leibniz algebras
    La Rosa, Gianmarco
    Mancini, Manuel
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 637 : 119 - 137
  • [15] On non-abelian extensions of Leibniz algebras
    Liu, Jiefeng
    Sheng, Yunhe
    Wang, Qi
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 574 - 587
  • [16] Loday J.-L., 1993, Enseign. Math., V39, P269
  • [17] Mac Lane S, 2013, Graduate Texts in Mathematics, V5