Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots

被引:12
|
作者
Wang, Yifan [1 ]
Wang, Jiarui [1 ]
Guo, Haoxue [1 ]
Wu, Xi [1 ]
Hao, Miaoyi [1 ]
Zhang, Renhe [1 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
关键词
Drought stress; Maize root; Melatonin; Tolerance mechanism; CONFERS DROUGHT; GROWTH; RESISTANCE; TOLERANCE; SENESCENCE; FLAVONOIDS; SALINITY; NUTRIENT; LEAVES; CARBON;
D O I
10.1016/j.plaphy.2023.107723
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Melatonin (MT) is essential for plant development and drought adaptation. However, the molecular and metabolic mechanisms underlying MT-induced drought tolerance in maize roots remain largely unclear. Herein, we investigated the effects of MT on drought tolerance in maize roots using integrated transcriptomic and metabolomic analyses, and identified MT-induced genes and metabolites associated with drought resistance. Compared with the untreated control plants, MT application alleviated the deleterious effects of drought on roots, by decreasing the malondialdehyde level and increasing the solute potential, eventually promoting root growth. Transcriptome and metabolome analysis demonstrated that MT significantly upregulates the expression of genes related to flavonoid biosynthesis (PAL, C4H, 4CL, HCT, CHS, CHI, F3 ' 5 ' H, and DFR), activates drought-responsive transcription factors (ERFs, NACs, MYBs, and bHLHs), and regulates hormone signaling-related genes, especially ethylene response factors (ERF4, ERF81, and ERF110). Moreover, MT increased the accumulation of flavonoid metabolites, particularly apigenin, luteolin, and quercetin, under drought-stress conditions. These findings were further supported by quantitative real-time polymerase chain reaction analysis and total flavonoid measurements. Altogether, our findings suggest that MT promotes maize root growth during drought by regulating flavonoid synthesis pathways, transcription factors, and plant hormone signals. This study provides new insights into the complex mechanisms by which MT enhances crop resistance to drought damage.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Combined analysis of metabolome and transcriptome of wheat kernels reveals constitutive defense mechanism against maize weevils
    Lv, Liangjie
    Guo, Xiaorui
    Zhao, Aiju
    Liu, Yuping
    Li, Hui
    Chen, Xiyong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [42] Effects of Exogenous Melatonin on Root Physiology, Transcriptome and Metabolome of Cotton Seedlings under Salt Stress
    Duan, Wenjing
    Lu, Bin
    Liu, Liantao
    Meng, Yanjun
    Ma, Xinying
    Li, Jin
    Zhang, Ke
    Sun, Hongchun
    Zhang, Yongjiang
    Dong, Hezhong
    Bai, Zhiying
    Li, Cundong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [43] Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress
    Wang, Jin
    Lu, Yuhang
    Xing, Shanshan
    Yang, Jinman
    Liu, Lei
    Huang, Kewen
    Liang, Dong
    Xia, Hui
    Zhang, Xiaoli
    Lv, Xiulan
    Lin, Lijin
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [44] Transcriptome and Metabolome Integrated Analysis Reveals the Mechanism of Cinnamomum bodinieri Root Response to Alkali Stress
    Han, Haozhang
    Zhang, Lihua
    Li, Suhua
    Zhao, Rong
    Wang, Fang
    Dong, Rong
    Wang, Xiaoli
    PLANT MOLECULAR BIOLOGY REPORTER, 2023, 41 (03) : 470 - 488
  • [45] Integrative analysis of transcriptome and metabolome reveals probiotic effects on cecal metabolism in broilers
    Wang, Yanfei
    Liu, Xuan
    Jia, Hao
    Zhang, Ruonan
    Guan, Jiawei
    Zhang, Lihuan
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2023, 103 (06) : 2876 - 2888
  • [46] Transcriptome and Metabolome Integrated Analysis Reveals the Mechanism of Cinnamomum bodinieri Root Response to Alkali Stress
    Haozhang Han
    Lihua Zhang
    Suhua Li
    Rong Zhao
    Fang Wang
    Rong Dong
    Xiaoli Wang
    Plant Molecular Biology Reporter, 2023, 41 : 470 - 488
  • [47] Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)
    Wu, Xien
    Luo, Dengli
    Zhang, Yingmin
    Jin, Ling
    Crabbe, M. James C.
    Qiao, Qin
    Li, Guodong
    Zhang, Ticao
    PLANT DIVERSITY, 2023, 45 (05) : 590 - 600
  • [48] Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
    Hu, Jiahui
    Wang, Juan
    Muhammad, Tayeb
    Yang, Tao
    Li, Ning
    Yang, Haitao
    Yu, Qinghui
    Wang, Baike
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [49] Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn(Crataegus chungtienensis)
    Xien Wu
    Dengli Luo
    Yingmin Zhang
    Ling Jin
    M.James C.Crabbe
    Qin Qiao
    Guodong Li
    Ticao Zhang
    Plant Diversity, 2023, 45 (05) : 590 - 600
  • [50] Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.)
    Liu, Yuhua
    Lv, Junheng
    Liu, Zhoubin
    Wang, Jing
    Yang, Bozhi
    Chen, Wenchao
    Ou, Lijun
    Dai, Xiongze
    Zhang, Zhuqing
    Zou, Xuexiao
    FOOD CHEMISTRY, 2020, 306