Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots

被引:12
|
作者
Wang, Yifan [1 ]
Wang, Jiarui [1 ]
Guo, Haoxue [1 ]
Wu, Xi [1 ]
Hao, Miaoyi [1 ]
Zhang, Renhe [1 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
关键词
Drought stress; Maize root; Melatonin; Tolerance mechanism; CONFERS DROUGHT; GROWTH; RESISTANCE; TOLERANCE; SENESCENCE; FLAVONOIDS; SALINITY; NUTRIENT; LEAVES; CARBON;
D O I
10.1016/j.plaphy.2023.107723
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Melatonin (MT) is essential for plant development and drought adaptation. However, the molecular and metabolic mechanisms underlying MT-induced drought tolerance in maize roots remain largely unclear. Herein, we investigated the effects of MT on drought tolerance in maize roots using integrated transcriptomic and metabolomic analyses, and identified MT-induced genes and metabolites associated with drought resistance. Compared with the untreated control plants, MT application alleviated the deleterious effects of drought on roots, by decreasing the malondialdehyde level and increasing the solute potential, eventually promoting root growth. Transcriptome and metabolome analysis demonstrated that MT significantly upregulates the expression of genes related to flavonoid biosynthesis (PAL, C4H, 4CL, HCT, CHS, CHI, F3 ' 5 ' H, and DFR), activates drought-responsive transcription factors (ERFs, NACs, MYBs, and bHLHs), and regulates hormone signaling-related genes, especially ethylene response factors (ERF4, ERF81, and ERF110). Moreover, MT increased the accumulation of flavonoid metabolites, particularly apigenin, luteolin, and quercetin, under drought-stress conditions. These findings were further supported by quantitative real-time polymerase chain reaction analysis and total flavonoid measurements. Altogether, our findings suggest that MT promotes maize root growth during drought by regulating flavonoid synthesis pathways, transcription factors, and plant hormone signals. This study provides new insights into the complex mechanisms by which MT enhances crop resistance to drought damage.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat
    Zhu, Shanshan
    Mi, Junzhen
    Zhao, Baoping
    Wang, Zhaoming
    Yang, Zhixue
    Wang, Mengxin
    Liu, Jinghui
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [2] Physiological Mechanism of Exogenous Silicon Alleviating Drought Stress in Maize
    Guo, Li-Feng
    Liu, Jin-Ping
    Xu, Jia-Qi
    Wang, Yu-Xian
    Zhao, Lei
    Qian, Cong
    SCIENCE OF ADVANCED MATERIALS, 2022, 14 (02) : 272 - 285
  • [3] Integrated metabolome and transcriptome analysis of maize roots response to different degrees of drought stress
    Yifan Wang
    Luoluo Tong
    Huiling Liu
    Binyan Li
    Renhe Zhang
    BMC Plant Biology, 25 (1)
  • [4] Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet
    Cao, Xiaoning
    Hu, Yulu
    Song, Jian
    Feng, Hui
    Wang, Junjie
    Chen, Ling
    Wang, Lun
    Diao, Xianmin
    Wan, Yan
    Liu, Sichen
    Qiao, Zhijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [5] Integrated metabolome, transcriptome and physiological analyses of melatonin-induced drought responses in maize roots and leaves
    Wang, Yifan
    Zhou, Wenli
    Wang, Zhi
    Gao, Shuanghong
    Zhang, Renhe
    PLANT GROWTH REGULATION, 2025, 105 (01) : 229 - 244
  • [6] Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum
    Zhao, Xing
    Li, Yiguo
    Huang, Yuanchong
    Shen, Jun
    Xu, Huini
    Li, Kunzhi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [7] Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Chinese Fir Seed Germination
    Chen, Xiangteng
    Zhao, Guangyu
    Li, Yanglong
    Wei, Shumeng
    Dong, Yuhong
    Jiao, Ruzhen
    FORESTS, 2023, 14 (04):
  • [8] Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots
    Zhang, Chen
    Chen, Bin
    Zhang, Ping
    Han, Qinghui
    Zhao, Guangwu
    Zhao, Fucheng
    METABOLITES, 2023, 13 (11)
  • [9] Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.)
    Hou, Yaling
    Zeng, Wenzhi
    Ao, Chang
    Huang, Jiesheng
    JOURNAL OF BIOTECHNOLOGY, 2024, 383 : 39 - 54
  • [10] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Junheng Lv
    Minghua Deng
    Zuosen Li
    Haishan Zhu
    Ziran Wang
    Yanling Yue
    Zhengan Yang
    Junqiang Xu
    Shurui Jiang
    Wei Zhao
    Jing Li
    Kai Zhao
    HorticulturalPlantJournal, 2023, 9 (05) : 958 - 970