In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries

被引:97
作者
Zhu, Jie [1 ,2 ,4 ]
Zhang, Jinping [1 ,2 ,4 ]
Zhao, Ruiqi [1 ,2 ,4 ]
Zhao, Yang [1 ,2 ,4 ]
Liu, Jie [1 ,2 ,4 ]
Xu, Nuo [1 ,2 ,4 ]
Wan, Xiangjian [1 ,2 ,3 ,4 ]
Li, Chenxi [1 ,2 ,4 ]
Ma, Yanfeng [1 ,2 ,4 ]
Zhang, Hongtao [1 ,2 ,4 ,5 ]
Chen, Yongsheng [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nankai Univ, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Polymer Chem, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[3] Nankai Univ, State Key Lab Elemento Organ Chem, Tianjin 300071, Peoples R China
[4] Nankai Univ, Renewable Energy Convers & Storage Ctr RECAST, Tianjin 300071, Peoples R China
[5] Nankai Univ, Coll Chem, Tianjin 300071, Peoples R China
关键词
Gel polymer electrolytes; Crosslinked polymer networks; In situ crosslinking; High ionic conductivity; Ultra-long cycling; STABILITY;
D O I
10.1016/j.ensm.2023.02.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercialization of lithium metal batteries (LMBs) highly relies on developing high-performance solid electrolytes, which should possess high Li+ conductivity comparable to liquid electrolytes, efficient suppression of dendrite growth, nonflammability, intimate electrode/electrolyte contact, and compatibility with the state-of-art lithium batteries industrial fabrication. Herein, we develop an in situ crosslinking method via cationic ring-opening polymerization (CROP) using a four-armed cross-linker and fabricate a crosslinked gel polymer elec-trolyte (c-GPE), where the more densely and efficiently three-dimensional (3D) crosslinked polymer network renders the c-GPE high solvent uptake and improved oxidative stability. Moreover, the strong interaction be-tween the crosslinked polymer network and the solvent is proved to reduce the desolvation energy barrier of Li+, which facilitates homogeneous Li+ deposition. Thus, the Li||LiFePO4 battery with this in situ fabricated c-GPE demonstrates one of the longest lifespans among polymer electrolyte-based batteries at high rate (2C) so far (2000 cycles with 78% retention). Furthermore, when this in situ 3D crosslinked gel polymer electrolyte is applied together with high voltage cathode material Ni0.6Mn0.2Co0.2O2, the Li|c-GPE|Ni0.6Mn0.2Co0.2O2 battery could deliver the best cycling performance with high nonflammability among CROP-based batteries so far (300 cycles with 80% retention). These results demonstrate that by the dedicated design of in situ polymerization, a high-performance c-GPE could be achieved to meet the requirements for practical, safe, and high-energy-density LMBs.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 53 条
[1]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[2]   Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures [J].
Chen, Xilin ;
Xu, Wu ;
Engelhard, Mark H. ;
Zheng, Jianming ;
Zhang, Yaohui ;
Ding, Fei ;
Qian, Jiangfeng ;
Zhang, Ji-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2346-2352
[3]   Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems [J].
Cho, Yoon-Gyo ;
Hwang, Chihyun ;
Cheong, Do Sol ;
Kim, Young-Soo ;
Song, Hyun-Kon .
ADVANCED MATERIALS, 2019, 31 (20)
[4]   High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis [J].
Cui, Yanyan ;
Liang, Xinmiao ;
Chai, Jingchao ;
Cui, Zili ;
Wang, Qinglei ;
He, Weisheng ;
Liu, Xiaochen ;
Liu, Zhihong ;
Cui, Guanglei ;
Feng, Jiwen .
ADVANCED SCIENCE, 2017, 4 (11)
[5]   High-Polarity Fluoroalkyl Ether Electrolyte Enables Solvation-Free Li+ Transfer for High-Rate Lithium Metal Batteries [J].
Dong, Liwei ;
Liu, Yuanpeng ;
Wen, Kechun ;
Chen, Dongjiang ;
Rao, Dewei ;
Liu, Jipeng ;
Yuan, Botao ;
Dong, Yunfa ;
Wu, Ze ;
Liang, Yifang ;
Yang, Mengqiu ;
Ma, Jianyi ;
Yang, Chunhui ;
Xia, Chuan ;
Xia, Baoyu ;
Han, Jiecai ;
Wang, Gongming ;
Guo, Zaiping ;
He, Weidong .
ADVANCED SCIENCE, 2022, 9 (05)
[6]   Smart Construction of an Intimate Lithium | Garnet Interface for All-Solid-State Batteries by Tuning the Tension of Molten Lithium [J].
Du, Mingjie ;
Sun, Yang ;
Liu, Bo ;
Chen, Bingbing ;
Liao, Kaiming ;
Ran, Ran ;
Cai, Rui ;
Zhou, Wei ;
Shao, Zongping .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (31)
[7]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566
[8]   Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery [J].
Fan, Xiulin ;
Ji, Xiao ;
Han, Fudong ;
Yue, Jie ;
Chen, Ji ;
Chen, Long ;
Deng, Tao ;
Jiang, Jianjun ;
Wang, Chunsheng .
SCIENCE ADVANCES, 2018, 4 (12)
[9]   Boosting the Oxidative Potential of Polyethylene Glycol-Based Polymer Electrolyte to 4.36 V by Spatially Restricting Hydroxyl Groups for High-Voltage Flexible Lithium-Ion Battery Applications [J].
Fang, Zhenhan ;
Luo, Yufeng ;
Liu, Haitao ;
Hong, Zixin ;
Wu, Hengcai ;
Zhao, Fei ;
Liu, Peng ;
Li, Qunqing ;
Fan, Shoushan ;
Duan, Wenhui ;
Wang, Jiaping .
ADVANCED SCIENCE, 2021, 8 (16)
[10]   Grafting of Lithiophilic and Electron-Blocking Interlayer for Garnet-Based Solid-State Li Metal Batteries via One-Step Anhydrous Poly-Phosphoric Acid Post-Treatment [J].
Guo, Chang ;
Shen, Yu ;
Mao, Peng ;
Liao, Kaiming ;
Du, Mingjie ;
Ran, Ran ;
Zhou, Wei ;
Shao, Zongping .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)