Estimating Smoothness and Optimal Bandwidth for Probability Density Functions
被引:0
作者:
Politis, Dimitris N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 92093 USAUniv Calif San Diego, Dept Math, San Diego, CA 92093 USA
Politis, Dimitris N.
[1
,2
]
Tarassenko, Peter F.
论文数: 0引用数: 0
h-index: 0
机构:
Tomsk State Univ, Inst Appl Math & Comp Sci, 36 Lenin Ave, Tomsk 634050, RussiaUniv Calif San Diego, Dept Math, San Diego, CA 92093 USA
Tarassenko, Peter F.
[3
]
Vasiliev, Vyacheslav A.
论文数: 0引用数: 0
h-index: 0
机构:
Tomsk State Univ, Inst Appl Math & Comp Sci, 36 Lenin Ave, Tomsk 634050, RussiaUniv Calif San Diego, Dept Math, San Diego, CA 92093 USA
Vasiliev, Vyacheslav A.
[3
]
机构:
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 92093 USA
[3] Tomsk State Univ, Inst Appl Math & Comp Sci, 36 Lenin Ave, Tomsk 634050, Russia
来源:
STATS
|
2023年
/
6卷
/
01期
基金:
美国国家科学基金会;
关键词:
non-parametric kernel density estimators;
adaptive density estimators;
mean square and almost surely convergence;
rate of convergence;
smoothness class;
ASYMPTOTIC NORMALITY;
SELECTION;
D O I:
10.3390/stats6010003
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The properties of non-parametric kernel estimators for probability density function from two special classes are investigated. Each class is parametrized with distribution smoothness parameter. One of the classes was introduced by Rosenblatt, another one is introduced in this paper. For the case of the known smoothness parameter, the rates of mean square convergence of optimal (on the bandwidth) density estimators are found. For the case of unknown smoothness parameter, the estimation procedure of the parameter is developed and almost surely convergency is proved. The convergence rates in the almost sure sense of these estimators are obtained. Adaptive estimators of densities from the given class on the basis of the constructed smoothness parameter estimators are presented. It is shown in examples how parameters of the adaptive density estimation procedures can be chosen. Non-asymptotic and asymptotic properties of these estimators are investigated. Specifically, the upper bounds for the mean square error of the adaptive density estimators for a fixed sample size are found and their strong consistency is proved. The convergence of these estimators in the almost sure sense is established. Simulation results illustrate the realization of the asymptotic behavior when the sample size grows large.
机构:
Univ Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Zeng, X. Y.
Chau, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Sch Nursing, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Chau, P. H.
Yip, Paul S. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Univ Hong Kong, Dept Social Work & Social Adm, Hong Kong, Peoples R China
2-F, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
机构:
Arizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USAArizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USA
Grandmaison, David D.
Frary, Vincent J.
论文数: 0引用数: 0
h-index: 0
机构:
Arizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USAArizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USA
机构:
Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Wu, Yi
Yu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Yu, Wei
Wang, Xuejun
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Wang, Xuejun
Rao, B. L. S. Prakasa
论文数: 0引用数: 0
h-index: 0
机构:
CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad 500046, IndiaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
机构:
Univ Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Zeng, X. Y.
Chau, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Sch Nursing, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Chau, P. H.
Yip, Paul S. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
Univ Hong Kong, Dept Social Work & Social Adm, Hong Kong, Peoples R China
2-F, Hong Kong, Peoples R ChinaUniv Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China
机构:
Arizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USAArizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USA
Grandmaison, David D.
Frary, Vincent J.
论文数: 0引用数: 0
h-index: 0
机构:
Arizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USAArizona Game & Fish Dept, Wildlife Contracts Branch, Phoenix, AZ 85086 USA
机构:
Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Wu, Yi
Yu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Yu, Wei
Wang, Xuejun
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R ChinaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
Wang, Xuejun
Rao, B. L. S. Prakasa
论文数: 0引用数: 0
h-index: 0
机构:
CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad 500046, IndiaChizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China