Estimating Smoothness and Optimal Bandwidth for Probability Density Functions

被引:0
作者
Politis, Dimitris N. [1 ,2 ]
Tarassenko, Peter F. [3 ]
Vasiliev, Vyacheslav A. [3 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 92093 USA
[3] Tomsk State Univ, Inst Appl Math & Comp Sci, 36 Lenin Ave, Tomsk 634050, Russia
来源
STATS | 2023年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
non-parametric kernel density estimators; adaptive density estimators; mean square and almost surely convergence; rate of convergence; smoothness class; ASYMPTOTIC NORMALITY; SELECTION;
D O I
10.3390/stats6010003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The properties of non-parametric kernel estimators for probability density function from two special classes are investigated. Each class is parametrized with distribution smoothness parameter. One of the classes was introduced by Rosenblatt, another one is introduced in this paper. For the case of the known smoothness parameter, the rates of mean square convergence of optimal (on the bandwidth) density estimators are found. For the case of unknown smoothness parameter, the estimation procedure of the parameter is developed and almost surely convergency is proved. The convergence rates in the almost sure sense of these estimators are obtained. Adaptive estimators of densities from the given class on the basis of the constructed smoothness parameter estimators are presented. It is shown in examples how parameters of the adaptive density estimation procedures can be chosen. Non-asymptotic and asymptotic properties of these estimators are investigated. Specifically, the upper bounds for the mean square error of the adaptive density estimators for a fixed sample size are found and their strong consistency is proved. The convergence of these estimators in the almost sure sense is established. Simulation results illustrate the realization of the asymptotic behavior when the sample size grows large.
引用
收藏
页码:30 / 49
页数:20
相关论文
共 50 条
  • [21] Estimating the quality of optimal treatment regimes
    Sies, Aniek
    Van Mechelen, Iven
    STATISTICS IN MEDICINE, 2019, 38 (25) : 4925 - 4938
  • [22] Proportional incremental cost probability functions and their frontiers
    Feve, Frederique
    Florens, Jean-Pierre
    Simar, Leopold
    EMPIRICAL ECONOMICS, 2023, 64 (06) : 2721 - 2756
  • [23] Approximate inference of the bandwidth in multivariate kernel density estimation
    Filippone, Maurizio
    Sanguinetti, Guido
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3104 - 3122
  • [24] On local bootstrap bandwidth choice in kernel density estimation
    Ziegler, Klaus
    STATISTICS & RISK MODELING, 2006, 24 (02) : 291 - 301
  • [25] Improving the monitoring of suicide incidence by estimating the probability of news reporting
    Zeng, X. Y.
    Chau, P. H.
    Yip, Paul S. F.
    STATISTICS IN MEDICINE, 2019, 38 (26) : 5103 - 5112
  • [26] A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
    Pelz, Maria-Theresia
    Schartau, Markus
    Somes, Christopher J.
    Lampe, Vanessa
    Slawig, Thomas
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (22) : 6609 - 6634
  • [27] Estimating the probability of illegal desert tortoise collection in the Sonoran Desert
    Grandmaison, David D.
    Frary, Vincent J.
    JOURNAL OF WILDLIFE MANAGEMENT, 2012, 76 (02) : 262 - 268
  • [28] Weighted Probability Density Estimator with Updated Bandwidths
    Wu, Yi
    Yu, Wei
    Wang, Xuejun
    Rao, B. L. S. Prakasa
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (02) : 886 - 906
  • [29] A Histogram Transform for Probability Density Function Estimation
    Lopez-Rubio, Ezequiel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 644 - 656
  • [30] Weighted Probability Density Estimator with Updated Bandwidths
    Yi Wu
    Wei Yu
    Xuejun Wang
    B. L. S. Prakasa Rao
    Journal of Systems Science and Complexity, 2024, 37 : 886 - 906