Estimating Smoothness and Optimal Bandwidth for Probability Density Functions

被引:0
|
作者
Politis, Dimitris N. [1 ,2 ]
Tarassenko, Peter F. [3 ]
Vasiliev, Vyacheslav A. [3 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 92093 USA
[3] Tomsk State Univ, Inst Appl Math & Comp Sci, 36 Lenin Ave, Tomsk 634050, Russia
来源
STATS | 2023年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
non-parametric kernel density estimators; adaptive density estimators; mean square and almost surely convergence; rate of convergence; smoothness class; ASYMPTOTIC NORMALITY; SELECTION;
D O I
10.3390/stats6010003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The properties of non-parametric kernel estimators for probability density function from two special classes are investigated. Each class is parametrized with distribution smoothness parameter. One of the classes was introduced by Rosenblatt, another one is introduced in this paper. For the case of the known smoothness parameter, the rates of mean square convergence of optimal (on the bandwidth) density estimators are found. For the case of unknown smoothness parameter, the estimation procedure of the parameter is developed and almost surely convergency is proved. The convergence rates in the almost sure sense of these estimators are obtained. Adaptive estimators of densities from the given class on the basis of the constructed smoothness parameter estimators are presented. It is shown in examples how parameters of the adaptive density estimation procedures can be chosen. Non-asymptotic and asymptotic properties of these estimators are investigated. Specifically, the upper bounds for the mean square error of the adaptive density estimators for a fixed sample size are found and their strong consistency is proved. The convergence of these estimators in the almost sure sense is established. Simulation results illustrate the realization of the asymptotic behavior when the sample size grows large.
引用
收藏
页码:30 / 49
页数:20
相关论文
共 50 条
  • [1] The optimal discretization of probability density functions
    Christofides, A
    Tanyi, B
    Christofides, S
    Whobrey, D
    Christofides, N
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (04) : 475 - 486
  • [2] Optimal discretization of probability density functions
    Christofides, A.
    Tanyi, B.
    Christofides, S.
    Whobrey, D.
    Christofides, N.
    Computational Statistics and Data Analysis, 1999, 31 (04): : 475 - 486
  • [3] PREDICTING AND ESTIMATING PROBABILITY DENSITY FUNCTIONS OF CHAOTIC SYSTEMS
    Rhee, Noah H.
    Gora, Pawel
    Bani-Yaghoub, Majid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01): : 297 - 319
  • [4] Optimal Control of Probability Density Functions of Stochastic Processes
    Annunziato, M.
    Borzi, A.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (04) : 393 - 407
  • [5] Nonparametric estimating equations for circular probability density functions and their derivatives
    Di Marzio, Marco
    Fensore, Stefania
    Panzera, Agnese
    Taylor, Charles C.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4323 - 4346
  • [6] Cepstrum Deconvolution For Estimating Probability Density Functions of Compound Signals
    Nakashima, N.
    Tagaeto, T.
    Tohyama, M.
    Lyon, R. H.
    Proceedings - International Conference on Noise Control Engineering, (06):
  • [7] Cepstrum deconvolution for estimating probability density functions of compound signals
    Nakashima, N
    Tagaeto, T
    Tohyama, M
    Lyon, RH
    INTER-NOISE 96 - THE 1996 INTERNATIONAL CONGRESS ON NOISE CONTROL ENGINEERING, 25TH ANNIVERSARY CONGRESS - LIVERPOOL, PROCEEDINGS, BOOKS 1-6: NOISE CONTROL - THE NEXT 25 YEARS, 1996, : 2821 - 2824
  • [8] Optimal rate for estimating local bandwidth in kernel estimators of regression functions
    Wang, KM
    Gasser, T
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (03) : 303 - 312
  • [9] Estimating Orientation Distribution Functions with Probability Density Constraints and Spatial Regularity
    Goh, Alvina
    Lenglet, Christophe
    Thompson, Paul M.
    Vidal, Rene
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT I, PROCEEDINGS, 2009, 5761 : 877 - +
  • [10] Optimal bandwidth matrices in functional principal component analysis of density functions
    Yousfi, Smail
    Boumaza, Rachid
    Aissani, Djamil
    Adjabi, Smail
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (11) : 2315 - 2330