Automatic segmentation of neurovascular bundle on mri using deep learning based topological modulated network
被引:0
作者:
Lei, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Lei, Yang
[1
,2
]
Wang, Tonghe
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USA
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Wang, Tonghe
[1
,2
,3
]
Roper, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Roper, Justin
[1
,2
]
Tian, Sibo
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Tian, Sibo
[1
,2
]
Patel, Pretesh
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Patel, Pretesh
[1
,2
]
Bradley, Jeffrey D.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Bradley, Jeffrey D.
[1
,2
]
Jani, Ashesh B.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Jani, Ashesh B.
[1
,2
]
Liu, Tian
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USA
Icahn Sch Med Mt Sinai, Dept Radiat Oncol, New York, NY USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Liu, Tian
[1
,2
,4
]
Yang, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
Emory Univ, Winship Canc Inst, Atlanta, GA USA
Emory Univ, Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USAEmory Univ, Dept Radiat Oncol, Atlanta, GA USA
Yang, Xiaofeng
[1
,2
,5
]
机构:
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USA
[4] Icahn Sch Med Mt Sinai, Dept Radiat Oncol, New York, NY USA
[5] Emory Univ, Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
deep learning;
MRI;
neurovascular bundles;
segmentation;
D O I:
10.1002/mp.16378
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeRadiation damage on neurovascular bundles (NVBs) may be the cause of sexual dysfunction after radiotherapy for prostate cancer. However, it is challenging to delineate NVBs as organ-at-risks from planning CTs during radiotherapy. Recently, the integration of MR into radiotherapy made NVBs contour delineating possible. In this study, we aim to develop an MRI-based deep learning method for automatic NVB segmentation. MethodsThe proposed method, named topological modulated network, consists of three subnetworks, that is, a focal modulation, a hierarchical block and a topological fully convolutional network (FCN). The focal modulation is used to derive the location and bounds of left and right NVBs', namely the candidate volume-of-interests (VOIs). The hierarchical block aims to highlight the NVB boundaries information on derived feature map. The topological FCN then segments the NVBs inside the VOIs by considering the topological consistency nature of the vascular delineating. Based on the location information of candidate VOIs, the segmentations of NVBs can then be brought back to the input MRI's coordinate system. ResultsA five-fold cross-validation study was performed on 60 patient cases to evaluate the performance of the proposed method. The segmented results were compared with manual contours. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95) are (left NVB) 0.81 +/- 0.10, 1.49 +/- 0.88 mm, and (right NVB) 0.80 +/- 0.15, 1.54 +/- 1.22 mm, respectively. ConclusionWe proposed a novel deep learning-based segmentation method for NVBs on pelvic MR images. The good segmentation agreement of our method with the manually drawn ground truth contours supports the feasibility of the proposed method, which can be potentially used to spare NVBs during proton and photon radiotherapy and thereby improve the quality of life for prostate cancer patients.