On accelerating a multilevel correction adaptive finite element method for Kohn-Sham equation

被引:3
作者
Hu, Guanghui [1 ,2 ]
Xie, Hehu [3 ,4 ]
Xu, Fei [5 ]
机构
[1] Univ Macau, Fac Sci & Technol, Dept Math & Guangdong Hong Kong Macao Joint Lab Da, Macau, Peoples R China
[2] Zhuhai UM Sci & Technol Res Inst, Zhuhai, Guangdong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Kohn-Sham equation; Multilevel correction method; Finite element method; Separately handing nonlinear terms; Parallel computing; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; GROUND-STATE SOLUTION; MULTIGRID METHOD; NUMERICAL-ANALYSIS; APPROXIMATIONS; PARTITION; ENERGY; SOLVER; ATOMS;
D O I
10.1016/j.jcp.2022.111674
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Based on the numerical method proposed in Hu et al. (2018) [22] for Kohn-Sham equation, further improvement on the efficiency is obtained in this paper by i). designing a numerical method with the strategy of separately handling the nonlinear Hartree potential and exchange-correlation potential, and ii). parallelizing the algorithm in an eigenpairwise approach. The feasibility of two approaches is analyzed in detail, and the new algorithm is described completely. Compared with previous results, a significant improvement of numerical efficiency can be observed from plenty of numerical experiments, which make the new method more suitable for the practical problems.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 65 条
[21]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS [J].
HEHRE, WJ ;
STEWART, RF ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (06) :2657-+
[22]   FINITE-ELEMENT APPROACH TO BAND-STRUCTURE ANALYSIS [J].
HERMANSSON, B ;
YEVICK, D .
PHYSICAL REVIEW B, 1986, 33 (10) :7241-7242
[23]   A multilevel correction adaptive finite element method for Kohn-Sham equation [J].
Hu, Guanghui ;
Xie, Hehu ;
Xu, Fei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 :436-449
[24]  
Jensen F., 1999, Introduction to Computational Chemistry
[25]   A full multigrid method for nonlinear eigenvalue problems [J].
Jia, ShangHui ;
Xie, HeHu ;
Xie, ManTing ;
Xu, Fei .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) :2037-2048
[26]   Large-scale all-electron density functional theory calculations using an enriched finite-element basis [J].
Kanungo, Bikash ;
Gavini, Vikram .
PHYSICAL REVIEW B, 2017, 95 (03)
[27]   Local-density-functional calculations of the energy of atoms [J].
Kotochigova, S ;
Levine, ZH ;
Shirley, EL ;
Stiles, MD ;
Clark, CW .
PHYSICAL REVIEW A, 1997, 55 (01) :191-199
[28]  
Lehoucq R. B., 1998, ARPACK USERS GUIDE S, DOI 10.1137/1.9780898719628
[29]   All-electron density functional theory and time-dependent density functional theory with high-order finite elements [J].
Lehtovaara, Lauri ;
Havu, Ville ;
Puska, Martti .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (05)
[30]   ELLIPTIC PRECONDITIONER FOR ACCELERATING THE SELF-CONSISTENT FIELD ITERATION IN KOHN-SHAM DENSITY FUNCTIONAL THEORY [J].
Lin, Lin ;
Yang, Chao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05) :S277-S298