p-adic Properties for Taylor Coefficients of Half-integral Weight Modular Forms on Γ1(4)

被引:0
作者
Kim, Jigu [1 ]
Lee, Yoonjin [1 ,2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul, South Korea
[2] Korea Inst Adv Study, Seoul, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2023年 / 27卷 / 01期
基金
新加坡国家研究基金会;
关键词
modular forms; Taylor coefficients; congruences; CONGRUENCES;
D O I
10.11650/tjm/220802
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime p 3 (mod 4) and m >= 2, Romik raised a question about whether the Taylor coefficients around root-1 of the classical Jacobi theta function.3 eventually vanish modulo p(m). This question can be extended to a class of modular forms of half-integral weight on Gamma(1)(4) and CM points; in this paper, we prove an affirmative answer to it for primes p >= 5. Our result is also a generalization of the results of Larson and Smith for modular forms of integral weight on SL2(Z).
引用
收藏
页码:23 / 38
页数:16
相关论文
共 18 条
[1]  
Berndt B.C., 1985, Ramanujan's Notebooks
[2]   PERIODICITIES FOR TAYLOR COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS [J].
Guerzhoy, Pavel ;
Mertens, Michael H. ;
Rolen, Larry .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 307 (01) :137-157
[3]  
Katz N., 1973, p-adic properties of modular schemes and modular forms. Modular functions of one variable III, V350, P69
[4]   PARA-ADIC CONGRUENCES AND MODULAR-FORMS OF HALF INTEGER WEIGHT [J].
KOBLITZ, N .
MATHEMATISCHE ANNALEN, 1986, 274 (02) :199-220
[5]  
Koblitz N., 1993, GRADUATE TEXTS MATH, V97
[6]  
Lang Serge, 1995, Grundlehren der Mathematischen Wissenschaften, V222
[7]   Congruence properties of Taylor coefficients of modular forms [J].
Larson, Hannah ;
Smith, Geoffrey .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) :1501-1518
[8]  
Romik D, 2020, RAMANUJAN J, V52, P275, DOI 10.1007/s11139-018-0109-5
[9]   Quasi-valuations extending a valuation [J].
Sarussi, Shai .
JOURNAL OF ALGEBRA, 2012, 372 :318-364
[10]  
Scherer R, 2021, RAMANUJAN J, V54, P427, DOI 10.1007/s11139-019-00216-2