Blow-up of solutions for a wave equation with nonlinear averaged damping and nonlocal nonlinear source terms

被引:6
作者
Hu, Qingying [1 ]
Li, Donghao [1 ]
Liu, Shuo [1 ]
Zhang, Hongwei [1 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Wave equation; initial boundary value problem; nonlinear averaged damping; nonlocal nonlinear source; blow-up; LONG-TIME DYNAMICS; PLATE EQUATION; GLOBAL-SOLUTIONS; WELL-POSEDNESS; EVOLUTION-EQUATIONS; ENERGY; NONEXISTENCE; ATTRACTOR; INSTABILITY; EXISTENCE;
D O I
10.2989/16073606.2022.2039972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial-boundary value problem for a wave equation with nonlinear averaged damping and nonlocal nonlinear source term is considered. We provide the sufficient conditions of finite time blow-up for weak solutions with suitable conditions on initial data by an ordinary differential inequality for an appropriately chosen functional.
引用
收藏
页码:695 / 710
页数:16
相关论文
共 49 条
[1]   Compactness of trajectories to some nonlinear second order evolution equations and applications [J].
Aloui, Faouzia ;
Ben Hassen, Imen ;
Haraux, Alain .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (03) :295-326
[2]  
[Anonymous], 1997, Differ. Integral Equ.
[3]   Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains [J].
Arat, Zehra ;
Khanmamedov, Azer ;
Simsek, Sema .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (04) :361-379
[4]   Blow up at infinity of solutions of polyharmonic Kirchhoff systems [J].
Autuori, G. ;
Colasuonno, F. ;
Pucci, P. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) :379-395
[5]   On the Regularization Mechanism for the Periodic Korteweg-de Vries Equation [J].
Babin, Anatoli V. ;
Ilyin, Alexei A. ;
Titi, Edriss S. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (05) :591-648
[6]   On nonlinear wave equations with degenerate damping and source terms [J].
Barbu, V ;
Lasiecka, I ;
Rammaha, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) :2571-2611
[7]   Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping [J].
Bociu, Lorena ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) :654-683
[8]  
Cavalcanti MM, 2004, DIFFER INTEGRAL EQU, V17, P495
[9]   EXPONENTIAL STABILITY FOR THE WAVE EQUATION WITH DEGENERATE NONLOCAL WEAK DAMPING [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Jorge Silva, Marcio A. ;
Webler, Claudete M. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (01) :189-213
[10]   Well-posedness for a class of Kirchhoff equations with damping and memory terms [J].
Chen, Hua ;
Liu, Gongwei .
IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (06) :1808-1836