Design and analysis of MIMO antenna array for TeraHertz communication

被引:0
|
作者
Sarkar, Pia [1 ]
Saha, Arijit [2 ]
Banerjee, Amit [3 ]
Chakraborty, Vedatrayee [1 ]
机构
[1] BP Poddar Inst Management & Technol, Dept Elect & Commun Engn, Kolkata, India
[2] Dum Dum Motijheel Rabindra Mahavidyalaya, Kolkata, India
[3] Bidhan Chandra Coll, Phys Dept, Microsyst Design Integrat Lab, Asansol, India
来源
JOURNAL OF OPTICS-INDIA | 2024年
关键词
TeraHertz spectrum; 6G communication; MIMO antenna; Dipole antenna; Linear array; Rectangular array;
D O I
10.1007/s12596-024-01739-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Antenna array of two dipole antennas made of copper has been designed and analyzed for 0.1 THz frequency in this work for element spacing of d=3 lambda 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{3\lambda }{4}$$\end{document} and d=lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\lambda$$\end{document}, where lambda is the wavelength. Antenna length is lambda 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\uplambda }{2 }$$\end{document} and width is lambda 200.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\uplambda }{200} .$$\end{document} Range of azimuth angle is [- 180 degrees-180 degrees] and elevation angle is [- 90 degrees-90 degrees]. Variation in correlation of power transmitted from first port to second port (S21) has been analyzed changing tilt variation of second dipole, inter element spacing and frequency. optimization of results antenna gain has been achieved as 5.41dBi and 6.35dBi for element spacing of d=3 lambda 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{3\lambda }{4}$$\end{document} and d=lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\lambda$$\end{document} respectively. Favorable values of diversity gain, total active reflection coefficient and mean effective gain have been achieved in this design as 10 dB, 0.5 dB and - 9.6 dB respectively. This design gives good results of envelope correlation coefficient as 0.02 and 0.098 for element spacing of d=3 lambda 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{3\lambda }{4}$$\end{document} and d=lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\lambda$$\end{document} respectively. This antenna is capable of exhibiting isolation of - 17.6702 dB and - 20. 0044 dB for d=3 lambda 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{3\lambda }{4}$$\end{document} and d=lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\lambda$$\end{document} element spacing respectively. Antenna efficiency is of high value as 96.48% and 97.67% for element spacing of d=3 lambda 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{3\lambda }{4}$$\end{document} and d=lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\lambda$$\end{document} respectively. A communication system has been studied implementing the proposed design. Encoding, precoding, orthogonal frequency division multiplexing and beam steering techniques have been applied to maintain signal quality. A compact array of small size (1.5 x 0.015 mm2), low weight, simple structure and of low-cost antenna at 0.1 THz frequency has been proposed in this study for 5G and 6G mobile communication.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Design and analysis of MIMO system for THz communication using terahertz patch antenna array based on photonic crystals with graphene
    Benlakehal, Mohamed Elamine
    Hocini, Abdesselam
    Khedrouche, Djamel
    Temmar, Mohamed Nasr Eddine
    Denidni, Tayeb Ahmed
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (11)
  • [2] RETRACTION: Design and analysis of MIMO system for THz communication using terahertz patch antenna array based on photonic crystals with graphene
    Benlakehal, Mohamed Elamine
    Hocini, Abdesselam
    Khedrouche, Djamel
    Temmar, Mohamed Nasr eddine
    Denidni, Tayeb Ahmed
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (09)
  • [3] A Microstrip Array Antenna for MIMO Communication
    Huo, Shudong
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2018), 2018, : 86 - 90
  • [4] Decoupling design for MIMO antenna array in Joint Communication and Sensing System
    Zhang, Zizhen
    Hu, Zhirun
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
  • [5] MIMO capacity and antenna array design
    Mbonjo, HNM
    Hansen, J
    Hansen, V
    GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 3155 - 3159
  • [6] Analysis and design of MIMO indoor communication system using terahertz patch antenna based on photonic crystal with graphene
    Temmar, Mohamed Nasr Eddine
    Hocini, Abdesselam
    Khedrouche, Djamel
    Denidni, Tayeb Ahmed
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2021, 43
  • [7] Terahertz MIMO antenna array for future generation of wireless applications
    Pant, Rashmi
    Malviya, Leeladhar
    FREQUENZ, 2024, 78 (5-6) : 271 - 280
  • [8] High isolation MIMO antenna array for multiband terahertz applications
    Amraoui, Youssef
    Halkhams, Imane
    El Alami, Rachid
    Jamil, Mohammed Ouazzani
    Qjidaa, Hassan
    RESULTS IN ENGINEERING, 2024, 23
  • [9] Capacity Analysis of Terrestrial Antenna Array in Distributed Satellite MIMO Communication System
    Li, Cong
    Zhu, Hongpeng
    Cai, Jun
    Hu, Jing
    Li, Guang
    Li, Guangxia
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (05) : 4435 - 4450
  • [10] 5G wireless communication microstrip patch antenna array design with MIMO
    H. V. Pallavi
    A. P. Jagadeesh Chandra
    Multimedia Tools and Applications, 2023, 82 : 31129 - 31155