A FRACTIONAL HARDY-SOBOLEV TYPE INEQUALITY WITH APPLICATIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT AND HARDY POTENTIAL

被引:0
作者
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Fractional p-Laplacian; Hardy-Sob olev type inequality; extremal func- tions; critical exponent; variational method; P-LAPLACIAN; NONLOCAL PROBLEMS; EXISTENCE;
D O I
10.3934/dcds.2024014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the attainability of the optimal constant S(N, p, s, mu) associated to the fractional Hardy -Sob olev type embedding which is defined as S(N, p, s, mu) := inf(u is an element of) W(center dot)s,p(RN)\{0}ff|u(x)-u(y)|p|x-y|N+psdxdy - mu f|u|p RN RN RN |x|ps dx ( fRN |u|p(s)& lowast; dx p p & lowast;s , where s is an element of (0, 1), p > 1 and N > ps, 0 <= mu < <mu>H, the latter being the best constant in the fractional Hardy inequality on RN, p(s)& lowast; = Np N-p(s) is the fractional critical Sobolev exponent. The technique that we use to prove the existence of extremals for S(N, p, s, mu) is based on blow-up analysis argument combined with a variational method. Further, as an application of the inequality, we prove an existence result for the critical fractional p -Laplacian equation with Hardy potential and involving continuous nonlinearities having quasicritical growth.
引用
收藏
页码:1901 / 1937
页数:37
相关论文
共 47 条
  • [11] Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations
    Caponi, Maicol
    Pucci, Patrizia
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2099 - 2129
  • [12] Nonlocal problems with critical Hardy nonlinearity
    Chen, Wenjing
    Mosconi, Sunra
    Squassina, Marco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) : 3065 - 3114
  • [13] Classification of solutions for an integral equation
    Chen, WX
    Li, CM
    Ou, B
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) : 330 - 343
  • [14] Best constants for Sobolev inequalities for higher order fractional derivatives
    Cotsiolis, A
    Tavoularis, NK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 225 - 236
  • [15] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [16] Dipierro S, 2017, PUBL SC NORM SUPER, DOI 10.1007/978-88-7642-601-8
  • [17] Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential
    Dipierro, Serena
    Montoro, Luigi
    Peral, Ireneo
    Sciunzi, Berardino
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
  • [18] The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem
    Fernandez Bonder, Julian
    Saintier, Nicolas
    Silva, Analia
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (06):
  • [19] On a p-Laplace equation with multiple critical nonlinearities
    Filippucci, Roberta
    Pucci, Patrizia
    Robert, Ferdric
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (02): : 156 - 177
  • [20] Kirchhoff-Hardy Fractional Problems with Lack of Compactness
    Fiscella, Alessio
    Pucci, Patrizia
    [J]. ADVANCED NONLINEAR STUDIES, 2017, 17 (03) : 429 - 456