Integrated phononic waveguides in diamond

被引:4
作者
Ding, Sophie Weiyi [1 ]
Pingault, Benjamin [1 ,2 ,3 ]
Shao, Linbo [1 ,4 ]
Sinclair, Neil [1 ]
Machielse, Bartholomeus [1 ,5 ]
Chia, Cleaven [1 ]
Maity, Smarak [1 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Delft Univ Technol, QuTech, POB 5046, NL-2600 Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 Delft, Netherlands
[4] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[5] AWS Ctr Quantum Networking, Boston, MA 02135 USA
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
Compendex;
D O I
10.1103/PhysRevApplied.21.014034
中图分类号
O59 [应用物理学];
学科分类号
摘要
Efficient generation, guiding, and detection of phonons, or mechanical vibrations, are of interest in various fields, including radio-frequency communication, sensing, and quantum information. Diamond is a useful platform for phononics because of the presence of strain-sensitive spin qubits, and its high Young's modulus, which allows for low-loss gigahertz devices. We demonstrate a diamond phononic waveguide platform for generating, guiding, and detecting gigahertz-frequency surface acoustic wave (SAW) phonons. We generate SAWs using interdigital transducers integrated on AlN/diamond and observe SAW transmission at 4-5 GHz through both ridge and suspended waveguides, with wavelength-scale cross sections (approximately 1 m(2)) to maximize spin-phonon interaction. This work is a crucial step for developing acoustic components for quantum phononic circuits with strain-sensitive color centers in diamond.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] LARGE-APERTURE FIBER WAVEGUIDES.
    Grigor'yants, V.V.
    Zamyatin, A.A.
    Ivanov, G.A.
    Isakov, V.N.
    Koreneva, N.A.
    Storozhev, V.V.
    Chamorovskii, Yu.K.
    Shreiber, S.V.
    Soviet journal of quantum electronics, 1982, 12 (07): : 939 - 941
  • [22] FREQUENCY CHARACTERISTICS OF FIBER OPTICAL WAVEGUIDES.
    Babkina, T.V.
    Grigor'yants, V.V.
    Smirnov, V.B.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1982, 36-37 (02): : 90 - 96
  • [23] DIAMOND DRILLING AT ALTAMONT, UTAH
    PRIMM, LA
    JOURNAL OF PETROLEUM TECHNOLOGY, 1975, 27 (JUN): : 785 - 791
  • [24] Experimental evidence of nonreciprocal propagation in space-time modulated piezoelectric phononic crystals
    Brothelande, S. Tessier
    Croenne, C.
    Allein, F.
    Vasseur, J. O.
    Amberg, M.
    Giraud, F.
    Dubus, B.
    APPLIED PHYSICS LETTERS, 2023, 123 (20)
  • [25] Raman Scattering in Hexagonal Diamond
    Ovsyuk N.N.
    Goryainov S.V.
    Likhacheva A.Y.
    Bulletin of the Russian Academy of Sciences: Physics, 2018, 82 (07) : 778 - 780
  • [26] Diamond Polishing Mechanisms.
    Yarnitzky, J.
    Porat, M.R.
    1600, (34): : 9 - 10
  • [27] Investigation on the sound energy localization in two-dimensional phononic crystals with a line defect
    School of Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
    Rengong Jingti Xuebao, 7 (1929-1935): : 1929 - 1935
  • [28] DRY DIAMOND DRILLING.
    Twaites, J.E.
    Veltze, S.M.
    Industrial Diamond Review, 1975, : 332 - 334
  • [29] On a Method of Approximate Computing of Scattering Matrices for Electromagnetic Waveguides
    Plamenevskii, B. A.
    Poretskii, A. S.
    Sarafanov, O. V.
    DOKLADY PHYSICS, 2018, 63 (10) : 414 - 417
  • [30] ACOUSTOOPTICAL TRANSDUCERS BASED ON OPTICAL FIBER WAVEGUIDES.
    Kravtsov, Yu.A.
    Minchenko, A.I.
    Petnikov, V.G.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1982, 36-37 (10): : 43 - 54