The automorphism group of Rauzy diagrams

被引:0
作者
Boissy, Corentin [1 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
关键词
Interval exchange maps; Rauzy diagram; translation surfaces; moduli spaces; INTERVAL EXCHANGE TRANSFORMATIONS; MODULI SPACE; CLASSIFICATION; DIFFERENTIALS; PROOF;
D O I
10.4171/GGD/728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the automorphism group of a Rauzy diagram as a subgroup of the symmetric group. This is based on an example that appears in some personal notes of Yoccoz that are to be published in the project "Yoccoz archives".
引用
收藏
页码:1133 / 1147
页数:15
相关论文
共 17 条
[1]   Exponential mixing for the Teichmuller flow [J].
Avila, Artur ;
Gouezel, Sebastien ;
Yoccoz, Jean-Christophe .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 104, 2006, 104 (104) :143-211
[2]   Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture [J].
Avila, Artur ;
Viana, Marcelo .
ACTA MATHEMATICA, 2007, 198 (01) :1-56
[3]   Moduli space of meromorphic differentials with marked horizontal separatrices [J].
Boissy, Corentin .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (05) :2373-2412
[4]   LABELED RAUZY CLASSES AND FRAMED TRANSLATION SURFACES [J].
Boissy, Corentin .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) :547-572
[5]   CLASSIFICATION OF RAUZY CLASSES IN THE MODULI SPACE OF ABELIAN AND QUADRATIC DIFFERENTIALS [J].
Boissy, Corentin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (10) :3433-3457
[7]   CARDINALITY OF RAUZY CLASSES [J].
Delecroix, Vincent .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (05) :1651-1715
[8]   A COMBINATORIAL PROOF OF THE KONTSEVICH-ZORICH-BOISSY CLASSIFICATION OF RAUZY CLASSES [J].
Fickenscher, Jon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1983-2025
[9]   Classification of Rauzy-Veech groups: proof of the Zorich conjecture [J].
Gutierrez-Romo, Rodolfo .
INVENTIONES MATHEMATICAE, 2019, 215 (03) :741-778
[10]  
Kerckhoff S.P., 1985, ERGOD THEOR DYN SYST, V5, P257, DOI DOI 10.1017/S0143385700002881