Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces

被引:0
作者
Futamura, Toshihide [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Daido Univ, Dept Math, Nagoya 4578530, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
metric measure space; Newtonian space; Musielak-Orlicz space; Poincare ' inequality; Dirichlet energy integral; double obstacle problem; EXPONENT SOBOLEV SPACES; ZERO BOUNDARY-VALUES; VARIABLE EXPONENT; NEWTONIAN SPACES; POINTWISE REGULARITY; GRADIENTS; STABILITY;
D O I
10.32917/h2022016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the existence and uniqueness of a generalized solution to a double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces supporting a Phi-Poincare inequality, as an extension of Farnana (Nonlinear Anal. 73 (2010), pp. 2819-2830).
引用
收藏
页码:359 / 372
页数:14
相关论文
共 35 条
  • [1] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [2] [Anonymous], 2009, MORE PROGRESSES ANAL
  • [3] [Anonymous], 2004, Real Anal. Exchange
  • [4] Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
  • [5] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [6] A POINTWISE REGULARITY THEORY FOR THE 2-OBSTACLE PROBLEM
    DALMASO, G
    MOSCO, U
    VIVALDI, MA
    [J]. ACTA MATHEMATICA, 1989, 163 (1-2) : 57 - 107
  • [7] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [8] Continuous dependence on obstacles for the double obstacle problem on metric spaces
    Farnana, Zohra
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 2819 - 2830
  • [9] Farnana Z, 2009, ANN ACAD SCI FENN-M, V34, P261
  • [10] THE DOUBLE OBSTACLE PROBLEM FORMUSIELAK-ORLICZ DIRICHLET ENERGY INTEGRAL ON METRIC MEASURE SPACES
    Futamura, Toshihide
    Shimomura, Tetsu
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2021, 73 (01) : 119 - 136