Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage

被引:54
作者
Hansen, Paige M. [1 ,2 ]
Even, Rebecca [1 ]
King, Alison E. [1 ]
Lavallee, Jocelyn [1 ,2 ,3 ]
Schipanski, Meagan [1 ,2 ]
Cotrufo, M. Francesca [1 ,2 ]
机构
[1] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO USA
[3] Environm Def Fund, New York, NY USA
基金
美国国家科学基金会;
关键词
climate; environmental controls; primary productivity; soil organic carbon fractions; soil properties; PARTICLE-SIZE FRACTIONS; CATION-EXCHANGE CAPACITY; SOIL CARBON; LAND-USE; MATTER FRACTIONS; STABILIZATION MECHANISMS; TEMPERATURE SENSITIVITY; DECOMPOSITION RATES; NITROGEN DYNAMICS; GOOGLE SCHOLAR;
D O I
10.1111/gcb.17080
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral-associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP-PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP-PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate-driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change. Using a global soil organic carbon dataset synthesized from existing literature, we demonstrate that particulate (POC) and mineral-associated organic carbon (MAOC) storage are controlled by distinct environmental variables. Specifically, global POC storage is controlled by variables related to carbon loss processes, while global MAOC storage is controlled by carbon inputs to the soil, moisture, and stabilization mechanisms.image
引用
收藏
页数:15
相关论文
共 157 条
[1]   Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands [J].
Abdalla, M. ;
Hastings, A. ;
Chadwick, D. R. ;
Jones, D. L. ;
Evans, C. D. ;
Jones, M. B. ;
Rees, R. M. ;
Smith, P. .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 253 :62-81
[2]   Unlocking complex soil systems as carbon sinks: multi-pool management as the key [J].
Angst, Gerrit ;
Mueller, Kevin E. ;
Castellano, Michael J. ;
Vogel, Cordula ;
Wiesmeier, Martin ;
Mueller, Carsten W. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter [J].
Angst, Gerrit ;
Mueller, Kevin E. ;
Nierop, Klaas G. J. ;
Simpson, Myrna J. .
SOIL BIOLOGY & BIOCHEMISTRY, 2021, 156
[4]   Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia [J].
Ashagrie, Y. ;
Zech, W. ;
Guggenberger, G. ;
Mamo, T. .
SOIL & TILLAGE RESEARCH, 2007, 94 (01) :101-108
[5]   Aggregation and carbon storage in silty soil using physical fractionation techniques [J].
Balabane, M ;
Plante, AF .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2004, 55 (02) :415-427
[6]   The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence [J].
Balesdent, J ;
Besnard, E ;
Arrouays, D ;
Chenu, C .
PLANT AND SOIL, 1998, 201 (01) :49-57
[7]   Relationship of soil organic matter dynamics to physical protection and tillage [J].
Balesdent, J ;
Chenu, C ;
Balabane, M .
SOIL & TILLAGE RESEARCH, 2000, 53 (3-4) :215-230
[8]   Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils [J].
Barthes, Bernard G. ;
Kouakoua, Ernest ;
Larre-Larrouy, Marie-Christine ;
Razafimbelo, Tantely M. ;
de Luca, Edgar F. ;
Azontonde, Anastase ;
Neves, Carmen S. V. J. ;
de Freitas, Pedro L. ;
Feller, Christian L. .
GEODERMA, 2008, 143 (1-2) :14-25
[9]   Present and future Koppen-Geiger climate classification maps at 1-km resolution [J].
Beck, Hylke E. ;
Zimmermann, Niklaus E. ;
McVicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Wood, Eric F. .
SCIENTIFIC DATA, 2018, 5
[10]   Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter [J].
Benbi, D. K. ;
Boparai, A. K. ;
Brar, Kiranvir .
SOIL BIOLOGY & BIOCHEMISTRY, 2014, 70 :183-192