Diameter and circumradius of reduced spherical polygons

被引:1
作者
Chen, Qiuyue [1 ]
Hou, Peiwen [1 ]
Jin, Hailin [1 ]
机构
[1] Suzhou Univ Sci & Technol, Dept Math, Suzhou 215009, Peoples R China
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2023年 / 66卷 / 1期
关键词
Width; Thickenss; Diameter; Circumradius; Reduced spherical polygon;
D O I
10.1007/s13366-023-00727-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the reduced spherical regular polygons of any fixed thickness have the minimal diameters and minimal circumradii among all reduced spherical polygons of the same thickness.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 10 条
  • [1] Chang YX, 2020, RESULTS MATH, V75, DOI 10.1007/s00025-020-01263-8
  • [2] Lassak M., 2018, Fasciculi Math, V61, P83
  • [3] Lassak M., 2022, SURVEYS GEOMETRY, VI, P7, DOI DOI 10.1007/978-3-030-86695-2_2
  • [4] Diameter, width and thickness of spherical reduced convex bodies with an application to Wulff shapes
    Lassak, Marek
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (02): : 369 - 379
  • [5] Width of spherical convex bodies
    Lassak, Marek
    [J]. AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 555 - 567
  • [6] REDUCED SPHERICAL POLYGONS
    Lassak, Marek
    [J]. COLLOQUIUM MATHEMATICUM, 2015, 138 (02) : 205 - 216
  • [7] Liu C., 2022, arXiv
  • [8] THE AREA OF REDUCED SPHERICAL POLYGONS
    Liu, Cen
    Chang, Yanxun
    Su, Zhanjun
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (02) : 599 - 607
  • [9] Murray DA., 1900, Spherical Trigonometry
  • [10] Musielak M., 2020, Ukr. Math. J, V10, P1400