NOISE CALIBRATION FOR SPDES: A CASE STUDY FOR THE ROTATING SHALLOW WATER MODEL

被引:4
作者
Crisan, Dan [1 ]
Lang, Oana [1 ]
Lobbe, Alexander [1 ]
VAN Leeuwen, Peter-jan [2 ]
Potthast, Roland [3 ,4 ]
机构
[1] Imperial Coll London, London, England
[2] Colorado State Univ, Denver, CO USA
[3] Deutsch Wetterdienst, Hohenpeissenberg, Germany
[4] Univ Reading, Reading, England
来源
FOUNDATIONS OF DATA SCIENCE | 2023年
基金
欧洲研究理事会;
关键词
Calibration; Stochastic Partial Differential Equations; Multiscale Modelling; Fluid Dynamics; Stochastic Parametrisation; FLUID; TRANSPORT; FLOW;
D O I
10.3934/fods.2023012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equations have been used in a variety of contexts to model the evolution of uncertain dynamical systems. In recent years, their applications to geophysical fluid dynamics has increased massively. For a judicious usage in modelling fluid evolution, one needs to calibrate the amplitude of the noise to data. In this paper we address this requirement for the stochastic rotating shallow water (SRSW) model. This work is a continuation of [15], where a data assimilation methodology has been introduced for the SRSW model. The noise used in [15] was introduced as an arbitrary random phase shift in the Fourier space. This is not necessarily consistent with the uncertainty induced by a model reduction procedure. In this paper, we introduce a new method of noise calibration of the SRSW model which is compatible with the model reduction technique. The method is generic and can be applied to arbitrary stochastic parametrisations. It is also agnostic as to the source of data (real or synthetic). It is based on a principal component analysis technique to generate the eigenvectors and the eigenvalues of the covariance matrix of the stochastic parametrisation. For SRSW model covered in this paper, we calibrate the noise by using the elevation variable of the model, as this is an observable easily obtainable in practical application, and use synthetic data as input for the calibration procedure.
引用
收藏
页数:27
相关论文
共 17 条
[1]  
Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications, V17, P173, DOI [10.1016/B978-0-12-460817-7.50009-4, DOI 10.1016/B978-0-12-460817-7.50009-4]
[2]   Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System [J].
Buizza, R ;
Miller, M ;
Palmer, TN .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (560) :2887-2908
[3]   MODELLING UNCERTAINTY USING STOCHASTIC TRANSPORT NOISE IN A 2-LAYER QUASI-GEOSTROPHIC MODEL [J].
Cotter, Colin ;
Crisan, Dan ;
Holm, Darryl ;
Pan, Wei ;
Shevchenko, Igor .
FOUNDATIONS OF DATA SCIENCE, 2020, 2 (02) :173-205
[4]   A Particle Filter for Stochastic Advection by Lie Trancnort: A Case Study for the Damped and Forced Incomprebbible Two-Dimemiunal Euler Equation [J].
Cotter, Colin ;
Crisan, Dan ;
Holm, Darryl D. ;
Pan, Wei ;
Shevchenko, Igor .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (04) :1446-1492
[5]   NUMERICALLY MODELING STOCHASTIC LIE TRANSPORT IN FLUID DYNAMICS [J].
Cotter, Colin J. ;
Crisan, Dan ;
Holm, Darryl D. ;
Pan, Wei ;
Shevchenko, Igor .
MULTISCALE MODELING & SIMULATION, 2019, 17 (01) :192-232
[6]  
Durran DR, 2010, TEXTS APPL MATH, V32, P1, DOI 10.1007/978-1-4419-6412-0
[7]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[8]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[9]   Variational principles for stochastic soliton dynamics [J].
Holm, Darryl D. ;
Tyranowski, Tomasz M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2187)
[10]  
Kalnay E., 2003, Atmospheric Modeling, Data Assimilation and Predictability