Battery prognostics and health management from a machine learning perspective

被引:73
作者
Zhao, Jingyuan [1 ]
Feng, Xuning [2 ]
Pang, Quanquan [3 ]
Wang, Junbin [4 ]
Lian, Yubo [4 ]
Ouyang, Minggao [2 ]
Burke, Andrew F. [1 ]
机构
[1] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[4] BYD Automot Engn Res Inst, Shenzhen 518118, Peoples R China
关键词
Lithium-ion battery; Machine learning; Deep learning; Prognostics and health management; State of health; Remaining useful lifetime; STATE-OF-HEALTH; LITHIUM-ION BATTERIES; CAPACITY ESTIMATION; ONLINE STATE; CYCLE LIFE; HIGH-POWER; CELLS; PREDICTION; CHARGE; TRANSFORMER;
D O I
10.1016/j.jpowsour.2023.233474
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transportation electrification is gaining prominence as a significant pathway for reducing emissions and enhancing environmental sustainability. Central to this shift are lithium-ion batteries, which have become the most prevalent energy storage devices. Despite their advantages, the issue of battery degradation during their operational lifetime poses a significant challenge. Progress has been made in modelling and predicting the evolution of nonlinear battery systems using classical physical, electrochemical, first-principle, and atomistic approaches. However, these models are inherently hampered by high computational costs and various sources of uncertainty. Instead of adjusting these classical modelling methods, we argue in this paper for the promising potential of machine learning-based approaches. These approaches allow for the extraction of patterns from inputs and the discovery of complex structures in the target dataset by exploring spatio-temporal features across extensive scales. A significant advancement is the hybrid modelling strategy that merges physical processes with the flexibility offered by deep learning. We present a comprehensive overview of Prognostics and Health Management (PHM) for lithium-ion batteries, with an emphasis on deep neural and kernel-based regression networks. We conclude by offering an outlook on the current limitations, providing a thoughtful analysis of the state of the field and potential future directions.
引用
收藏
页数:19
相关论文
共 158 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Deep learning-based robust positioning for all-weather autonomous driving [J].
Almalioglu, Yasin ;
Turan, Mehmet ;
Trigoni, Niki ;
Markham, Andrew .
NATURE MACHINE INTELLIGENCE, 2022, 4 (09) :749-+
[3]  
[Anonymous], DIAGNOSTICS PROGNOST
[4]  
[Anonymous], 2009, Finding groups in data: an introduction to cluster analysis
[5]   Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging [J].
Ansean, D. ;
Dubarry, M. ;
Devie, A. ;
Liaw, B. Y. ;
Garcia, V. M. ;
Viera, J. C. ;
Gonzalez, M. .
JOURNAL OF POWER SOURCES, 2016, 321 :201-209
[6]   Speech synthesis from neural decoding of spoken sentences [J].
Anumanchipalli, Gopala K. ;
Chartier, Josh ;
Chang, Edward F. .
NATURE, 2019, 568 (7753) :493-+
[7]   Machine learning for continuous innovation in battery technologies [J].
Aykol, Muratahan ;
Herring, Patrick ;
Anapolsky, Abraham .
NATURE REVIEWS MATERIALS, 2020, 5 (10) :725-727
[8]   State of health assessment for lithium batteries based on voltage-time relaxation measure [J].
Baghdadi, Issam ;
Briat, Olivier ;
Gyan, Philippe ;
Vinassa, Jean Michel .
ELECTROCHIMICA ACTA, 2016, 194 :461-472
[9]   Developing an Online Data-Driven State of Health Estimation of Lithium-Ion Batteries Under Random Sensor Measurement Unavailability [J].
Bamati, Safieh ;
Chaoui, Hicham .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01) :1128-1141
[10]   Diagnosis of a battery energy storage system based on principal component analysis [J].
Banguero, Edison ;
Correcher, Antonio ;
Perez-Navarro, Angel ;
Garcia, Emilio ;
Aristizabal, Andres .
RENEWABLE ENERGY, 2020, 146 :2438-2449