Depth Estimation for Phase-Coding Light Field Based on Neural Network

被引:2
作者
Yang, Chengzhuo [1 ,2 ]
Xiang, Sen [1 ,2 ]
Deng, Huiping [1 ,2 ]
Wu, Jing [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan 430081, Hubei, Peoples R China
关键词
depth estimation; light field; convolutional neural network; phase-; coding; structured light; GEOMETRY;
D O I
10.3788/LOP221145
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we propose a depth estimation method for phase -coding light field based on a lightweight convolutional neural network. This method aims to solve the problems of low accuracy for depth values caused by the insufficient texture of a measured object in traditional light field depth value estimation and high computational loads caused by high -dimensional light field data. In addition, a new phase -coding light field dataset is proposed. This novel method exploits the information of horizontal and vertical perspectives in phase -coding light field to extract the features using full convolutional networks and deepening average pooling. Furthermore, the central view is used as a guide to fuse the horizontal and vertical features and acquire the depth map. The experimental results demonstrate that the proposed method can generate high -accuracy depth maps, while number of parameters and computation time in generating such maps are, respectively, 27. 4% and 41. 2% of those of a typical light field depth estimation network. Thus, the proposed method has a higher efficiency and real-time performance than the traditional approach.
引用
收藏
页数:11
相关论文
共 36 条
[1]   A SPATIO-ANGULAR FILTER FOR HIGH QUALITY SPARSE LIGHT FIELD REFOCUSING [J].
Alain, Martin ;
Smolic, Aljosa .
2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
[2]   Structured-light-field 3D imaging without phase unwrapping [J].
Cai, Zewei ;
Liu, Xiaoli ;
Pedrini, Giancarlo ;
Osten, Wolfgang ;
Peng, Xiang .
OPTICS AND LASERS IN ENGINEERING, 2020, 129
[3]   Accurate depth estimation in structured light fields [J].
Cai, Zewei ;
Liu, Xiaoli ;
Pedrini, Giancarlo ;
Osten, Wolfgang ;
Peng, Xiang .
OPTICS EXPRESS, 2019, 27 (09) :13532-13546
[4]   Ray calibration and phase mapping for structured-light-field 3D reconstruction [J].
Cai, Zewei ;
Liu, Xiaoli ;
Peng, Xiang ;
Gao, Bruce Z. .
OPTICS EXPRESS, 2018, 26 (06) :7598-7613
[5]   Structured light field 3D imaging [J].
Cai, Zewei ;
Liu, Xiaoli ;
Peng, Xiang ;
Yin, Yongkai ;
Li, Ameng ;
Wu, Jiachen ;
Gao, Bruce Z. .
OPTICS EXPRESS, 2016, 24 (18) :20324-20334
[6]   High-quality 3D shape measurement using saturated fringe patterns [J].
Chen, Bo ;
Zhang, Song .
OPTICS AND LASERS IN ENGINEERING, 2016, 87 :83-89
[7]   Three-Dimensional Reconstruction of Light Field Based on Phase Similarity [J].
Feng, Wei ;
Gao, Junhui ;
Qu, Tong ;
Zhou, Shiqi ;
Zhao, Daxing .
SENSORS, 2021, 21 (22)
[8]   Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation [J].
Huang, Zhicong ;
Hu, Xuemei ;
Xue, Zhou ;
Xu, Weizhu ;
Yue, Tao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6300-6309
[9]   Multi-Volumetric Refocusing of Light Fields [J].
Jayaweera, Sakila S. ;
Edussooriya, Chamira U. S. ;
Wijenayake, Chamith ;
Agathoklis, Panajotis ;
Bruton, Len T. .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :31-35
[10]   Light Field Super-Resolution via Adaptive Feature Remixing [J].
Ko, Keunsoo ;
Koh, Yeong Jun ;
Chang, Soonkeun ;
Kim, Chang-Su .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :4114-4128